精英家教网 > 初中数学 > 题目详情
1.如图1,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.
(1)如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.
(2)如图3,四边形ABCD中,∠B=60°,∠C=120°,DB=DC=2,则AB-AC=?

分析 (1)证明△DFC≌△DEB即可.
(2)先证明△DFC≌△DEB,再证明△ADF≌△ADE,结合BD与EB的关系即可解决问题.

解答 (1)证明:如图②中,DE⊥AB于E,DF⊥AC于F,
∵DA平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,
∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,
∴∠B=∠FCD,
在△DFC和△DEB中,$\left\{\begin{array}{l}{∠F=∠DEB}&{\;}\\{∠FCD=∠B}&{\;}\\{DF=DE}&{\;}\end{array}\right.$,
∴△DFC≌△DEB,
∴DC=DB.
(2)解:如图③连接AD、DE⊥AB于E,DF⊥AC于F,
∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,
∴∠B=∠FCD,
在△DFC和△DEB中,$\left\{\begin{array}{l}{∠F=∠DEB}&{\;}\\{∠FCD=∠B}&{\;}\\{DC=DB}&{\;}\end{array}\right.$,
∴△DFC≌△DEB,
∴DF=DE,CF=BE,
在Rt△ADF和Rt△ADE中,$\left\{\begin{array}{l}{AD=AD}\\{DE=DF}\end{array}\right.$,
∴△ADF≌△ADE,
∴AF=AE,
∴AB-AC=(AE+BE)-(AF-CF)=2BE,
在Rt△DEB中,∵∠DEB=90°,∠B=∠EDB=60°,BD=2,
∴BE=1,
∴AB-AC=2.

点评 本题考查全等三角形的判定和性质、角平分线的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.在数轴上表示a、b两个实数的点的位置如图所示,则化简|a-b|-|a+b|的结果为(  )
A.aB.2bC.2a-2bD.-2b

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)如图(1),在△ABC和△CDE中,已知AC⊥BC,EC⊥DC,且AC=CD,BC=CE,你能判断AB与ED的关系吗?
(2)若将△ABC沿CD方向平移得到图(2),请直接判断△ADE的形状,不需要说明理由;若此时EC1=6,AC2=3,你知道线段C1C2的长度吗?说明你的解题思路.
(3)应用上述方法与结论,按照图(3)中的数据,请你直接写出图(3)中实线所围成的图形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E(点E不与点B重合),使△ACE和△ACB全等,写出所有满足条件的E点的坐标E1(5,-1),E2(1,-1),E3(1,5).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,电信部门要在公路m,n之间的S区域修建一座电视信号发射塔P.按照设计要求,发射塔P到区域S内的两个城镇A,B的距离必须相等,到两条公路m,n的距离也必须相等.发射塔P应建在什么位置?
(要求:尺规作图,不写作法,但要保留作图痕迹,并写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,抛物线y=ax2+bx-4(a≠0)经过点A(5,6),与x轴的负半轴交于点B,与y轴交于点C,且OC=4OB.
(1)求这条抛物线的表达式;
(2)如果点D在第四象限的抛物线上,若△ABD为直角三角形,求D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+k上的三点,则y1,y2,y3的大小关系为(  )
A.y1>y2>y3B.y1>y3>y2C.y2>y3>y1D.y3>y1>y2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.把下列各数在数轴上表示出来:并按从小到大的顺序用“<”号把这些数连结起来.
-3、|-2.5|、-(-1)、0、4
-3<0<-(-1)<|-2.5|<4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在平面直角坐标系中,一张矩形纸片OBCD按图所示放置,已知OB=10,BC=6,将这张纸片折叠,使点O落在CD上,记作点A,折痕与边OD交于点E,与边OB交于点F,已知点E的坐标为(0,4),则点A的坐标为(2$\sqrt{3}$,6).

查看答案和解析>>

同步练习册答案