精英家教网 > 初中数学 > 题目详情
如图,直线l过正方形ABCD的顶点D,点A、C到直线l的距离分别是1和2,则正方形ABCD的面积为(  )
分析:根据正方形性质得出AD=CD,∠ADC=90°,求出∠EAD=∠FDC,证△AED≌△DFC,求出DE=CF=2,在Rt△AED中,由勾股定理求出AD,即可求出正方形的面积.
解答:解:∵四边形ABCD是正方形,
∴AD=CD,∠ADC=90°,
∵AE⊥EF,CF⊥EF,
∴∠AED=∠DFC=90°,
∴∠ADE+∠CDF=180°-90°=90°,∠ADE+∠EAD=90°,
∴∠EAD=∠CDF,
∵在△AED和△DFC中
∠AED=∠DFC
∠EAD=∠CDF
AD=CD

∴△AED≌△DFC(AAS),
∴DE=CF=2,
在Rt△AED中,由勾股定理得:AD=
12+22
=
5

即正方形ABCD的面积是(
5
)
2
=5.
故选D.
点评:本题考查了正方形性质,全等三角形的性质和判定,勾股定理的应用,关键是求出DE=CF,主要考查学生分析问题和解决问题的能力,题型较好,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是a和b,则正方形的边长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,直线l过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE=4a,CF=a,则正方形ABCD的面积为
17a2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别为1和2,则正方形的边长是(  )
A、2
B、
5
C、3
D、
6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线d过正方形ABCD的顶点B,点A,C到直线d的距离分别是
2
和2
2
,求正方形ABCD的对角线AC的长.

查看答案和解析>>

同步练习册答案