精英家教网 > 初中数学 > 题目详情
3.解下列各方程
(1)x2-6x-16=0
(2)2(x-3)=3x(x-3)

分析 (1)利用因式分解法解方程;
(2)先移项得到2(x-3)-3x(x-3)=0,然后利用因式分解法解方程.

解答 解:(1)(x+2)(x-8)=0,
x+2=0或x-8=0,
所以x1=-2,x2=8;       
(2)2(x-3)-3x(x-3)=0,
(x-3)(2-3x)=0,
x-3=0或2-3x=0,
所以x1=3,x2=$\frac{2}{3}$.

点评 本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.若方程(a-3)x|a|-3-7=0是一个一元一次方程,则a等于±4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.关于x的方程x2+3(2m-1)x+9m2+6=0,两根之积是两根之和的2倍,则实数m的值为(  )
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.-$\frac{4}{3}$或0D.-$\frac{3}{4}$或0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a、b、c,其中a、b是直角边.正方形的边长分别是a、b.
(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图②).用两种不同的方法列代数式表示图②中的大正方形面积:
方法一:(a+b)2;       方法二:a2+2ab+b2
(2)观察图②,试写出(a+b)2,a2,2ab,b2这四个代数式之间的等量关系;
(3)请利用(2)中等量关系解决问题:
已知图①中一个三角形面积是6,图②的大正方形面积是49,求a2+b2的值.
(4)利用你发现的结论,求:9972+6×997+32的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.A、B两地相距560千米,甲、乙两车分别从A、B两地相向而行,甲车先以每小时120千米的速度出发1小时后,乙车出发,若乙车出发2小时后,两车相遇,并以各自的速度继续匀速行驶.
(1)求乙车的速度;
(2)乙车出发多长时间后两车相距400千米?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.数轴上大于-4且小于5的正整数有(  )
A.7个B.6个C.5个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:
(1)-$\sqrt{16}$+$\root{3}{64}$;                     
(2)-24×($\frac{1}{8}$-$\frac{1}{3}$+$\frac{1}{4}$);
(3)(-3)2×|-$\frac{2}{9}$|-42÷(-2)4
(4)-7×$(-\frac{22}{7})$+26×$(-\frac{22}{7})$-2×$\frac{22}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.下面有8个算式,排成4行2列
2+2,2×2
3+$\frac{3}{2}$,3×$\frac{3}{2}$
4+$\frac{4}{3}$,4×$\frac{4}{3}$
5+$\frac{5}{4}$,5×$\frac{5}{4}$
…,…
(1)同一行中两个算式的结果怎样?
(2)算式2014+$\frac{2014}{2013}$和2014×$\frac{2014}{2013}$的结果相等吗?
(3)请你用含自然数n的代数式表示这一规律.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:${(\frac{1}{2})^{-1}}-{(\sqrt{3}-\sqrt{2})^0}+|{-3}|$.

查看答案和解析>>

同步练习册答案