【题目】如图,矩形ABCD中,AB=10,BC=4,Q为AB边的中点,P为CD边上的动点,且△AQP是腰长为5的等腰三角形,则CP的长为_______.
【答案】2、7或8.
【解析】
首先计算出QB的长,再分三种情况:①如图1,PQ=AQ=5时;②如图2,AP=AQ=5时;③如图3,PQ=AQ=5且△PBQ为钝角三角形时分别计算出CP的长即可.
解:∵AB=10,点Q是BA的中点,
∴AQ=BQ=BA=×10=5,
∵四边形ABCD是矩形,
∴DC=AB=10,∠B=∠C=∠D=90°,
①如图1,PQ=AQ=5时,过点P作PE⊥BA于E,
根据勾股定理,QE=,
∴BE=BQ+QE=5+3=8,
∴CP=BE=8;
②如图2,AP=AQ=5时,
根据勾股定理,DP=,
∴CP=10-3=7;
③如图3,PQ=AQ=5且△PBQ为钝角三角形时,过点P作PE⊥BA于E,
根据勾股定理:QE=,
∵BE=QB-EQ=5-3=2,
∴CP=BE=2,
综上所述,CP的长为2或7或8.
故答案为:2、7或8.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,CE平分∠ACB,交AB于点E.
(1)求证:AC平分∠DAB;
(2)求证:△PCE是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知⊙O的半径为1,∠PAQ的正切值为,AQ是⊙O的切线,将⊙O从点A开始沿射线AQ的方向滚动,切点为A'.
(1)sin∠PAQ= ,cos∠PAQ= ;
(2)①如图1,当⊙O在初始位置时,圆心O到射线AP的距离为 ;
②如图2,当⊙O的圆心在射线AP上时,AA'= ;
(3)在⊙O的滚动过程中,设A与A'之间的距离为m,圆心O到射线AP的距离为n,求n与m之间的函数关系式,并探究当m分别在何范围时,⊙O与射线AP相交、相切、相离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“五一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.
(1)请帮助旅行社设计租车方案.
(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?
(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:正方形ABCD,E是BC的中点,连接AE,过点B作射线BM交正方形的一边于点F,交AE于点O.
(1)若BF⊥AE,
①求证:BF=AE;
②连接OD,确定OD与AB的数量关系,并证明;
(2)若正方形的边长为4,且BF=AE,求BO的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的口袋中装有3个带号码的球,球号分别为2,3,4,这些球除号码不同外其它均相同。甲、乙、两同学玩摸球游戏,游戏规则如下:
先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号。将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数。若该两位数能被4整除,则甲胜,否则乙胜.
问:这个游戏公平吗?请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.
当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE=OC;
当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的长方形花圃.
(1)设花圃的一边AB为xm,则BC的长可用含x的代数式表示为______m;
(2)当AB的长是多少米时,围成的花圃面积为63平方米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com