精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线轴交于A -1,0),B 5,0)两点,直线y轴交于点,与轴交于点x轴上方的抛物线上一动点,过点轴于点,交直线于点设点的横坐标为

1)求抛物线的解析式;

2)若,求的值;

3)若点是点关于直线的对称点,是否存在点,使点落在轴上?若存在,请直接写出相应的点的坐标;若不存在,请说明理由

【答案】1y=-x2+4x+52m=2或m=3)(-),4,5),3-,2-3)

【解析】

试题分析:1)利用待定系数法求出抛物线的解析式;

2)用含m的代数式分别表示出PE、EF,然后列方程求解;

3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解;当四边形PECE′是菱形不存在时,P点y轴上,即可得到点P坐标

试题解析:1)将点A、B坐标代入抛物线解析式,得:

,解得

抛物线的解析式为:y=-x2+4x+5

2)点P的横坐标为m,

Pm,-m2+4m+5),Em,-m+3),Fm,0

PE=|yP-yE|=|-m2+4m+5)--m+3)|=|-m2+m+2|,

EF=|yE-yF|=|-m+3)-0|=|-m+3|

由题意,PE=5EF,即:|-m2+m+2|=5|-m+3|=|-m+15|

若-m2+m+2=-m+15,整理得:2m2-17m+26=0,

解得:m=2或m=

若-m2+m+2=--m+15),整理得:m2-m-17=0,

解得:m=或m=

由题意,m的取值范围为:-1<m<5,故m=、m=这两个解均舍去

m=2或m=

3)假设存在

作出示意图如下:

点E、E关于直线PC对称,

∴∠1=2,CE=CE,PE=PE

PE平行于y轴,∴∠1=3,

∴∠2=3,PE=CE,

PE=CE=PE=CE,即四边形PECE是菱形

当四边形PECE是菱形存在时,

由直线CD解析式y=-x+3,可得OD=4,OC=3,由勾股定理得CD=5

过点E作EMx轴,交y轴于点M,易得CEM∽△CDO,

,即,解得CE=|m|,

PE=CE=|m|,又由2)可知:PE=|-m2+m+2|

|-m2+m+2|=|m|

若-m2+m+2=m,整理得:2m2-7m-4=0,解得m=4或m=-

若-m2+m+2=-m,整理得:m2-6m-2=0,解得m1=3+,m2=3-

由题意,m的取值范围为:-1<m<5,故m=3+这个解舍去

当四边形PECE是菱形这一条件不存在时,

此时P点横坐标为0,E,C,E'三点重合与y轴上,菱形不存在

综上所述,存在满足条件的点P,可求得点P坐标为-),4,5),3-,2-3)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线 过点A和B,与y轴交于点C.

(1)求点C的坐标,并画出抛物线的大致图象.

(2)点Q(8,m)在抛物线上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值.

(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们约定:对角线互相垂直的凸四边形叫做“正垂形”.

(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“正垂形”的有   

②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形   “正垂形”.(填“是”或“不是”)

(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,当≤OE≤时,求AC2+BD2的取值范围;

(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“正垂形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4试直接写出满足下列三个条件的抛物线的解析式;

; ②; ③“正垂形”ABCD的周长为12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,,点从点出发,以每秒单位的速度向点运动,点从点同时出发,以每秒单位的速度向点运动,其中一个动点到达终点时,另一个动点也随之停止运动,设运动时间为秒.

1)当时,若以点和点中的两个点为顶点的四边形为平行四边形,且线段为平行四边形的一边,求的值.

2)若以点和点中的两个点为顶点的四边形为菱形,且线段为菱形的一条对角线,请直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某单位举行“健康人生”徒步走活动,某人从起点体育村沿建设路到市生态园,再沿原路返回,设此人离开起点的路程s(千米)与徒步时间t(小时)之间的函数关系如图所示,其中从起点到市生态园的平均速度是4千米/小时,用2小时,根据图象提供信息,解答下列问题.

1)求图中的a值.

2)若在距离起点5千米处有一个地点C,此人从第一次经过点C到第二次经过点C,所用时间为1.75小时.

①求AB所在直线的函数解析式;

②请你直接回答,此人走完全程所用的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,以△ABC的一边BC为直径的O分别交ABACDE,下面判断中:当△ABC为等边三角形时,△ODE是等边三角形;当△ODE是等边三角形,△ABC为等边三角形;当∠A=45°时,△ODE是直角三角形;当△ODE是直角三角形时,∠A=45°.正确的结论有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,每个小正方形的边长为1,格点△ABC(顶点在网格线的交点上)的顶点A、C的坐标分别为A(﹣3,4)C(0,2)

(1)请在网格所在的平面内建立平面直角坐标系,并写出点B的坐标;

(2)画出△ABC关于原点对称的图形△A1B1C1

(3)求△ABC的面积;

(4)在x轴上存在一点P,使PA+PB的值最小,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.

(1)求证:△ABC≌△ADE;

(2)求∠FAE的度数;

(3)求证:CD=2BF+DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xoy中,点Mx轴的正半轴上,Mx轴于A、B两点,交y轴于C、D两点,且C为AE的中点,AEy轴于G点,若点A的坐标为(-1,0),AE=4

(1)求点C的坐标;

(2)连接MG、BC,求证:MGBC

查看答案和解析>>

同步练习册答案