精英家教网 > 初中数学 > 题目详情

【题目】如图,已知矩形的边长.某一时刻,动点点出发沿方向以的速度向点匀速运动;同时,动点点出发沿方向以的速度向点匀速运动,问:

(1)经过多少时间,的面积等于矩形面积的

(2)是否存在时刻t,使以A,M,N为顶点的三角形与相似?若存在,求t的值;若不存在,请说明理由.

【答案】(1)1秒或2秒(2)秒或

【解析】

试题分析:(1)设经过秒后,根据的面积等于矩形面积的,得出方程解方程即可;(2)假设经过秒时,以为顶点的三角形与相似,分两种情况讨论,然后利用相似三角形的对应边成比例得出方程,解方程即可.

试题解析:(1)设经过秒后,的面积等于矩形面积的

则有:,即

解方程,得

经检验,可知符合题意,所以经过1秒或2秒后,的面积等于矩形面积的

(2)假设经过秒时,以为顶点的三角形与相似,

由矩形,可得

因此有

,或

,得;解,得

经检验,都符合题意,所以动点同时出发后,经过秒或秒时,以为顶点的三角形与相似

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°
(1)求证:AG=FG;
(2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知矩形ABCD,E为AD边上一动点,过A,B,E三点作⊙O,P为AB的中点,连接OP,
(1)求证:BE是⊙O的直径且OP⊥AB;
(2)若AB=BC=8,AE=6,试判断直线DC与⊙O的位置关系,并说明理由;
(3)如图2,若AB=10,BC=8,⊙O与DC边相交于H,I两点,连结BH,当∠ABE=∠CBH时,求△ABE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200/时,其他主要参考数据如下:

运输工具

途中平均速度

(千米/)

运费

(/千米)

装卸费用

()

火车

100

15

2000

汽车

80

20

900

(1)如果选择汽车的总费用比选择火车的总费用多1100元,那么你知道本市与A市之间的路程是多少千米吗?请你列方程解答;

(2)A市与某市之间的路程为s千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,要想将这批水果运往该市进行销售,则当s为多少时,选择火车和汽车运输所需费用相同?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=x2+bx+c的图象交x轴于A、B两点,交y轴于点C,顶点为点P,经过B、C两点的直线为y=﹣x+3.

(1)求该二次函数的关系式;
(2)在该抛物线的对称轴上是否存在点M,使以点C、P、M为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;
(3)连接AC,在x轴上是否存在点Q,使以点P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有三个内角相等凸四边形叫三等角四边形.

(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;
(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.
(3)三等角四边形ABCD中,∠A=∠B=∠C<90°,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?(作图解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点Px轴,y轴的垂线,分别交直线l于点MN,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(-,0),B(0,2),C(-2,2).

(1)当直线l的表达式为y=x时,

①在点ABC中,直线l的近距点是

②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;

(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k的取值范围

查看答案和解析>>

同步练习册答案