C
分析:利用折叠知识,得到全等三角形,即△ABO≌△CEO,再进一步证得∠ACD是直角,然后利用勾股定理得到平行四边形的底边及底边上的高,进而求得面积.
解答:

解:设AE与BC交于O点,O点是BC的中点,
△ABO和△CEO中,BO=CO,∠AOB=∠EOC,∠B=∠CEO.
所以△ABO≌△CEO(ASA),所以AO=EO.
因为BC=AD=AE,所以AO=EO=BO=CO,所以∠B=∠BAO=∠E=∠ECO,
所以AB∥CE,即DCE三点共线.
因为∠ACD=∠ACE,所以CD⊥AC,
在直角△ACD中,AC=

=2

.
平行四边形ABCD的面积=AC×CD=12

.
故选C.
点评:本题主要考查了平行四边形的性质和面积的计算,平行四边形的面积等于平行四边形的边长与该边上的高的积.即 S=a•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.