精英家教网 > 初中数学 > 题目详情
3.因式分解:6xy2-9x2y-y2

分析 原式提取公因式分解即可.

解答 解:原式=-y(9x2-6xy+y).

点评 此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.小明的家和苏州图书馆在同一条笔直的马路(人民路)旁,周六小明准备沿着这条马路去图书馆.她先从家步行到公交车站台甲,然后乘车到公交车站台乙下车,最后步行到图书馆(假设在整个过程中小明步行的速度不变,公交车匀速行驶).图中折线ABCDE表示小明和图书馆之间的距离y(米)与她离家时间x(分钟)之间的函数关系.
(1)联系生活实际说出线段BC表示的实际意义;
(2)求公交车的速度及图书馆与公交站台乙之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)计算:(-2)3+|-22+3|-(-1)2016+3÷$\frac{1}{3}$
(2)计算:(-$\frac{3}{4}$)×(-8+$\frac{2}{3}$-$\frac{1}{3}$)+(-3)2×0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,扇形OAB的圆心角为124°,C是弧$\widehat{AB}$上一点,则∠ACB=118°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.现有一个“Z”型的工件(工件厚度忽略不计),如图示,其中AB为20cm,BC为60cm,∠ABC=90°,∠BCD=50°,求该工件如图摆放时的高度(即A到CD的距离).
(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知∠AOB是平角,∠AOC=20°,∠COD:∠DOB=3:13,且OE平分∠BOD,求∠COE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.今年的北京奥运会期间,有8人乘坐速度相同的两辆小汽车同时赶往奥运场馆观看篮球比赛,每辆车乘4人(不包括司机).其中一辆小汽车在距离场馆15km的地方出现故障,此时距比赛开始的时间还有42分钟.这时唯一可以利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的平均速度是5km/h(上、下车时间忽略不计).试设计两种方案,通过计算说明这8个人能够在比赛前赶到场馆.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,△ABC中,AD、AE分别是BC边上的中线和高,点F是AB中点,作FH⊥BC于点H,FH与AD的延长线交于点G.若AC=$\sqrt{34}$,tan∠ABC=$\frac{4}{5}$,DE=FH,则HG=$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.问题背景:在△ABC中,AB、BC、AC三边的长分别为$\sqrt{5}$、$\sqrt{10}$、$\sqrt{13}$,求此三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上:$\frac{7}{2}$.
思维拓展:
(2)我们把上述求△ABC面积的方法叫做构图法.如果△ABC三边的长分别为$\sqrt{5}$a、$\sqrt{8}$a、$\sqrt{17}$a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
探索创新:
(3)若△ABC三边的长分别为$\sqrt{{m}^{2}+16{n}^{2}}$、$\sqrt{9{m}^{2}+4{n}^{2}}$、$\sqrt{16{m}^{2}+4{n}^{2}}$ (m>0,n>0,且m≠n),试运用构图法画出示意图并求出这三角形的面积.

查看答案和解析>>

同步练习册答案