精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,直线与双曲线交于AC两点,x轴于点B,且OA=AB.

(1)求双曲线的解析式;

(2)求点C的坐标,并直接写出x的取值范围;

(3)AC直线与y轴交于点D,求D点到OA的距离.

【答案】(1)(2)C(-1-4)(3)点到的距离为.

【解析】

(1)作高线,根据等腰直角三角形的性质和点的坐标的特点得:,可得的坐标,从而得双曲线的解析式;

(2)一次函数和反比例函数解析式列方程组,解出可得点的坐标,根据图象可得结论;

(3)过点,由点的坐标得出直线,即可得出是等腰直角三角形,然后根据勾股定理即可求得.

解:(1)∵点在直线上,

∴设

,且

(2),解得:

由图象得:的取值范围是

(3)过点

∴直线为:

是等腰直角三角形,

由直线可知

,即

点到的距离为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某农户承包荒山种植某产品种蜜柚已知该蜜柚的成本价为8千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量千克与销售单价千克之间的函数关系如图所示.

yx的函数关系式,并写出x的取值范围;

当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1xx轴交点A恰好是二次函数y2x轴的其中一个交点,已知二次函数图象的对称轴为x1,并与y轴的交点为D(01)

(1)求二次函数的解析式;

(2)设该二次函数与一次函数的另一个交点为C点,连接DC,求三角形ADC的面积.

(3)根据图象,直接写出当y1y2x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了了解全校400名学生参加课外锻炼的情况,随机对40名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分)

40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36

34 53 38 40 39 32 45 40 50 45 40 40 26 45 40 45 35 40 42 45

(1)补全频率分布表和频率分布直方图.

分组

频数

频率

4.522.5

2

0.050

22.530.5

3

30.538.5

10

0.250

38.546.5

19

46.554.5

5

0.125

54.562.5

1

0.025

合计

40

1.000

(2)填空:在这个问题中,总体是____,样本是____.由统计结果分析的,这组数据的平均数是38.35(),众数是____,中位数是_____

(3)如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?

(4)估计这所学校有多少名学生,平均每天参加课外锻炼的时间多于30分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,函数和函数(m是常数,且)的图象可能是( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线与双曲线交于点A,过点AO的平行线交双曲线于点B,连接AB并延长与y轴交于点,则k的值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC纸片的一角沿DE向下翻折,使点A落在BC边上,且DEBC,如图所示,则下列结论不成立的是( )

A. AED=∠BB. ADABDEBC

C. DE=BCD. ADB是等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有(   )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

同步练习册答案