精英家教网 > 初中数学 > 题目详情

在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD,则以下结论中一定正确的个数有
①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形.


  1. A.
    0个
  2. B.
    1个
  3. C.
    2个
  4. D.
    3个
D
分析:①EF、FD是直角三角形斜边上的中线,都等于BC的一半;②可证△ABD∽△ACE;③证明∠EFD=60°.
解答:①∵BD、CE为高,∴△BEC、△BDC是直角三角形.∵F是BC的中点,∴EF=DF=BC.故此选项正确;
②∵∠ADB=∠AEC=90°,∠A公共,∴△ABD∽△ACE,得AD:AB=AE:AC.故此选项正确;
③∵∠A=60°,∴∠ABC+∠ACB=120°.
∵F是BC的中点,∴EF=BF,DF=CF.∴∠ABF=∠BEF,∠ACB=∠CDF.
∴∠BFE+∠CFD=120°,∠EFD=60°.又∵EF=FD,∴△DEF是等边三角形.故此选项正确.
故正确的有3个.
故选:D.
点评:此题主要考查了直角三角形的性质、相似三角形的判定和性质、等边三角形的判定、锐角三角函数的定义,熟练利用相关性质得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在锐角△ABC中,a、b、c分别表示为∠A、∠B、∠C的对边,O为其外心,则O点到三边的距离之比为(  )
A、a:b:c
B、
1
a
1
b
1
c
C、cosA:cosB:cosC
D、sinA:sinB:sinC

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在锐角△ABC中,最大的高线AH等于中线BM,求证:∠B<60°(如图).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在锐角△ABC中,∠BAC=60°,BD、CE为高,F为BC的中点,连接DE、DF、EF,则结论:①B、E、D、C四点共圆;②AD•AC=AE•AB;③△DEF是等边三角形;④当∠ABC=45°时,BE=
2
DE中,一定正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南开区一模)在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD,则以下结论中一定正确的个数有(  )
①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

在锐角△ABC中,已知
cosA-
1
2
+|tanB-
3
|=0
,且AB=4,则△ABC的面积等于(  )

查看答案和解析>>

同步练习册答案