【题目】△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α(0°<α≤90°),点F,G,P分别是DE,BC,CD的中点,连接PF,PG.
(1)如图①,α=90°,点D在AB上,则∠FPG= °;
(2)如图②,α=60°,点D不在AB上,判断∠FPG的度数,并证明你的结论;
(3)连接FG,若AB=5,AD=2,固定△ABC,将△ADE绕点A旋转,则PF长度的最大值为 ;PF长度的最小值为 ;
第27题
【答案】(1)∠GPF=90°;(2))∠FPG=120°,理由详见解析;(3);
【解析】
(1)由AB=AC、AD=AE,得出BD=CE,再根据G、P、F分别是BC、CD、DE的重点,可以得出PG∥BD,PF∥CE.则∠GPF=180°-∠α=90°
(2)连接BD、CE,由已知可以证明△ABD≌△ACE,则∠ABD=∠ACE,因为G、P、F分别是BC、CD、DE的中点,则PG∥BD,PF∥CE,进而得出∠GPF=180°-∠α=120°.
(3)当D在BA的延长线上时,CE=BD最长,此时BD=AB+AD=7;
(1)∵AB=AC、AD=AE,
∴BD=CE,
∵G、P、F分别是BC、CD、DE的中点,
∴PG∥BD,PF∥CE.
∴∠ADC=∠DPG,∠DPF=∠ACD,
∴∠GPF=∠DPF+∠DPG=∠ADC+∠ACD=180°-∠BAC=180°-∠α=90°,
即∠GPF=90°;
(2)∠FPG=120°;理由如下:
连接BD,连接CE.如图②
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,在△ABD和△ACE中,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
∵G、P、F分别是BC、CD、DE的中点,
∴PG∥BD,PF∥CE.
∴∠PGC=∠CBD,∠DPF=∠DCE=∠DCA+∠ACE=∠DCA+∠ABD,∠DPG=∠PGC+∠BCD=∠CBD+∠BCD,
∴∠GPF=∠DPF+∠DPG=∠DCA+∠ABD+∠CBD+∠BCD=180°-∠BAC=180°-∠α=120°,
即∠GPF=120°;
(3);
科目:初中数学 来源: 题型:
【题目】如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0,其中正确的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个长为2,宽为1的矩形ABCD和矩形EFGH如图1所示摆放在直线l上,DE=2,将矩形ABCD绕点D顺时针旋转α角(0°<α<90°),将矩形EFGH绕点E逆时针旋转相同的角度.在旋转的过程中,利用图2思考:当矩形ABCD和矩形EFGH重合部分为正方形时,α=_____°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一张三角形纸片如图甲,其中将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为如图乙再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为如图丙原三角形纸片ABC中,的大小为______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平行四边形ABCD中,BC=3,AB=4,,E为线段BC上任意一点,连接AE并延长与DC交于点G,若BE=2EC,则AE的边长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形),△ABC的顶点A,B的坐标分别为:(﹣4,3),(-2,﹣1).
(1)请在图中作出平面直角坐标系并写出点C的坐标;
(2)请作出将△ABC向下平移2个单位长度,再向右平移3个单位长度后的;并写出点C′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C在⊙O上,过点C作射线CM且满足∠ACM=∠ABC.
(1)判断CM与⊙O的位置关系,并证明;
(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com