精英家教网 > 初中数学 > 题目详情
6.已知a为大于2的整数,且关于x的不等式$\left\{\begin{array}{l}2x-a≤0\\ x≥2\end{array}\right.$无解,则a的值为3.

分析 首先解第一个不等式,然后根据不等式组无解即可得到关于a的不等式,从而求解.

解答 解:解不等式2x-a≤0得:x≤$\frac{a}{2}$,
∵不等式组$\left\{\begin{array}{l}2x-a≤0\\ x≥2\end{array}\right.$无解,
则$\frac{a}{2}$<2,
解得:a<4,
又∵a为大于2的整数,
∴a=3.
故答案为3.

点评 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.计算下列各小题
(1)($\frac{3}{2}$-$\frac{1}{3}$+3)÷$\frac{1}{6}$
(2)-22-$\sqrt{4}$+(-1)2013×$\frac{2}{5}$÷$\root{3}{-64}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.填空
(1)(-16)+(-8)=-24;
(2)(+15)+(-4)=11;  
(3)(-$\frac{1}{2}$)+(-$\frac{2}{3}$)=-$\frac{7}{6}$;        
(4)(-3.4)+4.3=0.9;
(5)(-3.5)+0=-3.5; 
(6)(-12)+(+12)=0;
(7)(-32)-(+5)=-37;
(8)7.3-(-6.8)=14.1;
(9)(-3.28)-1=-4.28;         
(10)12-21=-9;  
(11)(-5)×(-3)=15;      
(12)(-$\frac{3}{4}$)×$\frac{2}{3}$=-$\frac{1}{2}$;
(13)(-10)×$\frac{1}{3}$×0.1×(-6)=2;
(14)21×(-71)×0×43=0;
(15)(-18)÷6=-3;      
(16)$\frac{6}{25}$÷(-$\frac{4}{5}$)=-$\frac{3}{10}$;
(17)$\frac{-24}{-16}$=$\frac{3}{2}$;
(18)-$\frac{1}{2}$÷$\frac{7}{8}$×(-$\frac{3}{4}$)=$\frac{3}{7}$;         
(19)(-2)5=-32;         
(20)-24=-16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.阅读下列材料:
小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为$\sqrt{5}$、$\sqrt{10}$、$\sqrt{13}$,求△ABC的面积.
小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.
(1)图1中△ABC的面积为$\frac{7}{2}$;
参考小明解决问题的方法,完成下列问题;
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).
①利用构图法在答卷的图2中画出三边长分别为$\sqrt{13}$、$2\sqrt{5}$、$\sqrt{29}$的格点△DEF;
②计算△DEF的面积.
(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF,若PQ=$\sqrt{10}$,PR=$\sqrt{13}$,QR=3.
①试判断△PQR与△PEF面积之间的关系,并说明理由.
②求六边形AQRDEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.有一道数学题:“计算(x3+3x2y-2xy2)-2(x3-xy2+y3)-(-x3+3x2y-y3)的,其中x=-$\frac{1}{2014}$,y=-1”.甲同学把“x=-$\frac{1}{2014}$”错抄成“x=$\frac{1}{2014}$”但他计算的结果也是正确的,试说明理由,并求出这个结果.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.代数式-0.5、-x2y、2x2-3x+1、-$\frac{2}{a}$、$\frac{x-1}{3}$、$\frac{x}{π}$中,单项式共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.在实数范围内因式分解:2x2-8xy+5y2=($\sqrt{2}$x-2$\sqrt{2}$y+$\sqrt{3}$y)($\sqrt{2}$x-2$\sqrt{2}$y-$\sqrt{3}$y).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列命题中,正确的是(  )
A.圆内接四边形的对角相等
B.长度相等的两条弧叫做等弧
C.平分弦的直径垂直于这条弦
D.弦所对的两条弧的中点连线垂直平分弦,且过圆心

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线OA1为边作正方形 OAA1B 再以正方形OA1A2B1的对角线OA2作正方形OA2A3B2,…,依此规律,则点A8的坐标是(  )
A.(-8,0)B.(0,8)C.(0,8$\sqrt{2}$)D.(0,16)

查看答案和解析>>

同步练习册答案