分析 (1)利用网格表示出各部分面积,进而得出答案;
(2)利用勾股定理借助网格求出即可;
(3)六边形AQRDEF的面积=边长为$\sqrt{10}$的正方形面积+边长为$\sqrt{13}$的正方形面积+△PEF的面积+△PQR的面积,其中两个三角形的面积分别用长方形的面积减去各个小三角形的面积.
解答 解:(1)图1中△ABC的面积为3×3-$\frac{1}{2}$×1×2-$\frac{1}{2}$×1×3-$\frac{1}{2}$×2×3=$\frac{7}{2}$,
故答案为:$\frac{7}{2}$;
(2)①如图所示:
②△DEF的面积为4×5-$\frac{1}{2}$×2×3-$\frac{1}{2}$×2×4-$\frac{1}{2}$×2×5=8;
(3)①如图3,
△PEF的面积为6×2-$\frac{1}{2}$×1×6-$\frac{1}{2}$×1×3-$\frac{1}{2}$×3×2=$\frac{9}{2}$,
△PQR的面积为$\frac{1}{2}$×3×3=$\frac{9}{2}$,
∴△PQR与△PEF面积相等;
②六边形AQRDEF的面积为($\sqrt{13}$)2+$\frac{9}{2}$+$\frac{9}{2}$+($\sqrt{10}$)2=13+9+10=32.
点评 此题主要考查了勾股定理以及三角形面积求法,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com