精英家教网 > 初中数学 > 题目详情
9.三个连续整数的积是0,则这三个整数的和是-3,0,3.

分析 根据题意确定这三个整数是:①-2,-1,0;②-1,0,1;③0,1,2,然后再求和即可.

解答 解:三个连续整数的积是0,则这三个整数是:①-2,-1,0;②-1,0,1;③0,1,2;
-2+(-1)+0=-3,
-1+0+1=0,
0+1+2=3,
故答案为:-3,0,3.

点评 此题主要考查了有理数的乘法和加法,关键是掌握任何数同零相乘,都得0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.观察算式:$\frac{1}{1×2}$=1-$\frac{1}{2}$=$\frac{1}{2}$
                 $\frac{1}{1×2}$+$\frac{1}{2×3}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$=$\frac{2}{3}$
                 $\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=$\frac{3}{4}$
(1)按规律填空$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$=$\frac{4}{5}$.$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$+$\frac{1}{5×6}$=$\frac{5}{6}$
(2)计算$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$…+$\frac{1}{99×100}$的值,并写出计算过程.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图①,把一张长方形纸板摆放在坐标系中,已知AB=8,AC=17.
(1)求点D坐标.
(2)折三角形纸板ADC,使边CD落在边AC上,设折痕交AD边于点E(图②),求点E坐标.
(3)将三角形纸板ADC沿AC边翻折,翻折后记为△AMC,设AM与BC交于点N,请在图③中画出图形,并求出点N坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.填空
(1)(-16)+(-8)=-24;
(2)(+15)+(-4)=11;  
(3)(-$\frac{1}{2}$)+(-$\frac{2}{3}$)=-$\frac{7}{6}$;        
(4)(-3.4)+4.3=0.9;
(5)(-3.5)+0=-3.5; 
(6)(-12)+(+12)=0;
(7)(-32)-(+5)=-37;
(8)7.3-(-6.8)=14.1;
(9)(-3.28)-1=-4.28;         
(10)12-21=-9;  
(11)(-5)×(-3)=15;      
(12)(-$\frac{3}{4}$)×$\frac{2}{3}$=-$\frac{1}{2}$;
(13)(-10)×$\frac{1}{3}$×0.1×(-6)=2;
(14)21×(-71)×0×43=0;
(15)(-18)÷6=-3;      
(16)$\frac{6}{25}$÷(-$\frac{4}{5}$)=-$\frac{3}{10}$;
(17)$\frac{-24}{-16}$=$\frac{3}{2}$;
(18)-$\frac{1}{2}$÷$\frac{7}{8}$×(-$\frac{3}{4}$)=$\frac{3}{7}$;         
(19)(-2)5=-32;         
(20)-24=-16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如果a与b互为倒数,c与d互为相反数,|m|=3,求代数式ab-c-d+$\frac{m}{3}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.阅读下列材料:
小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为$\sqrt{5}$、$\sqrt{10}$、$\sqrt{13}$,求△ABC的面积.
小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.
(1)图1中△ABC的面积为$\frac{7}{2}$;
参考小明解决问题的方法,完成下列问题;
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).
①利用构图法在答卷的图2中画出三边长分别为$\sqrt{13}$、$2\sqrt{5}$、$\sqrt{29}$的格点△DEF;
②计算△DEF的面积.
(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF,若PQ=$\sqrt{10}$,PR=$\sqrt{13}$,QR=3.
①试判断△PQR与△PEF面积之间的关系,并说明理由.
②求六边形AQRDEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.有一道数学题:“计算(x3+3x2y-2xy2)-2(x3-xy2+y3)-(-x3+3x2y-y3)的,其中x=-$\frac{1}{2014}$,y=-1”.甲同学把“x=-$\frac{1}{2014}$”错抄成“x=$\frac{1}{2014}$”但他计算的结果也是正确的,试说明理由,并求出这个结果.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.在实数范围内因式分解:2x2-8xy+5y2=($\sqrt{2}$x-2$\sqrt{2}$y+$\sqrt{3}$y)($\sqrt{2}$x-2$\sqrt{2}$y-$\sqrt{3}$y).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.已知某班有40名学生,将他们的身高分成4组,在160~165cm区间的有8名学生,那么这个小组的频率为(  )
A.0.20B.0.15C.0.01D.0.25

查看答案和解析>>

同步练习册答案