精英家教网 > 初中数学 > 题目详情

【题目】天水某公交公司将淘汰某一条线路上冒黑烟较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,

1)求购买A型和B型公交车每辆各需多少万元?

2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?

【答案】(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.

【解析】

1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元列出方程组解决问题;

2)设购买A型公交车a辆,则B型公交车(10-a)辆,由购买A型和B型公交车的总费用不超过1220万元“10辆公交车在该线路的年均载客总和不少于650万人次列出不等式组探讨得出答案即可.

1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得

解得

答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.

2)设购买A型公交车a辆,则B型公交车(10a)辆,由题意得

解得:

因为a是整数,

所以a678

则(10a)=432

三种方案:

①购买A型公交车6辆,则B型公交车4辆:100×6+150×41200万元;

②购买A型公交车7辆,则B型公交车3辆:100×7+150×31150万元;

③购买A型公交车8辆,则B型公交车2辆:100×8+150×21100万元;

购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,图1ADBC的一张纸条,按图1→2→3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为(   )

A.120°B.108°C.126°D.114°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1.点MA开始沿⊙P按逆时针方向转动,射线AMx轴于点N(n,0),设点M转过的路程为m(0m1).

(1)当m=时,n=_____

(2)随着点M的转动,当m变化到时,点N相应移动的路径长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC的边AB绕着点A顺时针旋转)得到AB′,边AC绕着点A逆时针旋转)得到AC′,联结B′C′,+=60°时,我们称AB′C′ABC双旋三角形,如果等边ABC的边长为a, 那么它所得的双旋三角形B′C′=___________(用含a的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.

(1)该校七年级共有多少人参加春游?

(2)请你帮该校设计一种最省钱的租车方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学为调查某小学六个年级学生每周的零花钱情况,他在学校中随机抽取了400名学生进行调查统计并制成如下图表,

金额(元)

人数

频率

10≤x20

40

0. 1

20≤x30

80

0. 2

30≤x40

a

0. 4

40≤x50

100

b

50≤x60

20

0. 05

请根据图表提供的信息解答下列问题:

1a =__________b =__________

2)补全频数分布直方图;

3)若全校共有3000名学生,请你估计该校每周零花钱超过50元的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题的提出:

如果点P是锐角ABC内一动点,如何确定一个位置,使点PABC的三顶点的距离之和PA+PB+PC的值为最小?

问题的转化:

(1)ΔAPC绕点A逆时针旋转60度得到连接这样就把确定PA+PB+PC的最小值的问题转化成确定的最小值的问题了,请你利用如图证明:

问题的解决:

(2)当点P到锐角ABC的三项点的距离之和PA+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置:_____________________________

问题的延伸:

(3)如图是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列能判定AB∥CD的条件有( )个.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线分别与x轴、y轴交于两点,与直线交于点C42).

1)点A坐标为( ),B为( );

2)在线段上有一点E,过点Ey轴的平行线交直线于点F,设点E的横坐标为m,当m为何值时,四边形是平行四边形;

3)若点Px轴上一点,则在平面直角坐标系中是否存在一点Q,使得四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案