精英家教网 > 初中数学 > 题目详情

【题目】已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,

(1)如图①,若D为弧AB的中点,求∠ABC和∠ABD的大小;

(2)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小.

【答案】1)∠ABC=52°ABD=45°;(2)∠OCD=26°

【解析】

1)根据圆周角和圆心角的关系和图形可求∠ABC和∠ABD的大小.

2)根据题意和平行线的性质,切线的性质可以求得∠OCD的度数.

1)∵AB是⊙O的直径,弦CDAB相交,∠BAC=38°

∴∠ACB=90°

∴∠ABC=ACB-BAC=90°-38°=52°

D为弧AB的中点,∠AOB=180°

∴∠AOD=90°

∴∠ABD=45°

2)连接OD

DP切⊙O于点D

ODDP,即∠ODP=90°

DPAC,又∠BAC=38°

∴∠P=BAC=38°

∵∠AODODP的一个外角,

∴∠AOD=P+ODP=128°

∴∠ACD=64°

OC=OA,∠BAC=38°

∴∠OCA=BAC=38°

∴∠OCD=ACD-OCA=64°-38°=26°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解方程:

12

22x2+x30(配方法)

33xx2)=2x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB120°OC平分∠AOB,∠MCN60°CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.

1)如图1,当点N在射线OB上时,求证:OCOM+ON

2)如图2,当点N在射线OB的反向延长线上时,OCOMON之间的数量关系是   (直接写出结论,不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,是等腰直角三角形且,把绕点B顺时针旋转,得到,把绕点C顺时针旋转,得到,依此类推,得到的等腰直角三角形的直角顶点的坐标为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.

(1)求m的取值范围;

(2)若m为非负整数,且该方程的根都是无理数,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+cx轴交于点A(﹣30)和点B,与y轴交于点C 02).

1)求抛物线的表达式,并用配方法求出顶点D的坐标;

2)若点E是点C关于抛物线对称轴的对称点,求tanCEB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k0)的图象交于A(﹣1,a),B两点,与x轴交于点C.

(1)求此反比例函数的表达式;

(2)若点P在x轴上,且SACP=SBOC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线F1yax2+bx1a1)与x轴交于点AB(点A在点B的左侧),与y轴于点C,已知点A的坐标为(﹣0),

1)直接写出b   (用含a的代数式表示);

2)求点B的坐标;

3)设抛物线F1的顶点为P1,将该抛物线平移后得到抛物线F2,抛物线F2的顶点P2满足P1P2BC,并且抛物线F2过点B

设抛物线F2与直线BC的另一个交点为D,判断线段BCCD的数量关系(不需证明),并直接写出点D的坐标;

求出抛物线F2y轴的交点纵坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的项点AC分别在轴的正半轴上,点B点反比例函数k≠0)的第一象限内的图象上,OA=3OC=5,动点P轴的上方,且满足

1)若点P在这个反比例函数的图象上,求点P的坐标;

2)连接POPA,求PO+PA的最小值;

3)若点Q在平面内一点,使得以ABPQ为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.

查看答案和解析>>

同步练习册答案