【题目】已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,
(1)如图①,若D为弧AB的中点,求∠ABC和∠ABD的大小;
(2)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小.
【答案】(1)∠ABC=52°∠ABD=45°;(2)∠OCD=26°.
【解析】
(1)根据圆周角和圆心角的关系和图形可求∠ABC和∠ABD的大小.
(2)根据题意和平行线的性质,切线的性质可以求得∠OCD的度数.
(1)∵AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,
∴∠ACB=90°,
∴∠ABC=∠ACB-∠BAC=90°-38°=52°,
∵D为弧AB的中点,∠AOB=180°,
∴∠AOD=90°,
∴∠ABD=45°;
(2)连接OD,
∵DP切⊙O于点D,
∴OD⊥DP,即∠ODP=90°,
由DP∥AC,又∠BAC=38°,
∴∠P=∠BAC=38°,
∵∠AOD是△ODP的一个外角,
∴∠AOD=∠P+∠ODP=128°,
∴∠ACD=64°,
∵OC=OA,∠BAC=38°,
∴∠OCA=∠BAC=38°,
∴∠OCD=∠ACD-∠OCA=64°-38°=26°.
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.
(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;
(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是 (直接写出结论,不必证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,,,是等腰直角三角形且,把绕点B顺时针旋转,得到,把绕点C顺时针旋转,得到,依此类推,得到的等腰直角三角形的直角顶点的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为非负整数,且该方程的根都是无理数,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C (0,2).
(1)求抛物线的表达式,并用配方法求出顶点D的坐标;
(2)若点E是点C关于抛物线对称轴的对称点,求tan∠CEB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求此反比例函数的表达式;
(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线F1:y=ax2+bx﹣1(a>1)与x轴交于点A、B(点A在点B的左侧),与y轴于点C,已知点A的坐标为(﹣,0),
(1)直接写出b= (用含a的代数式表示);
(2)求点B的坐标;
(3)设抛物线F1的顶点为P1,将该抛物线平移后得到抛物线F2,抛物线F2的顶点P2满足P1P2∥BC,并且抛物线F2过点B,
①设抛物线F2与直线BC的另一个交点为D,判断线段BC与CD的数量关系(不需证明),并直接写出点D的坐标;
②求出抛物线F2与y轴的交点纵坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的项点A、C分别在、轴的正半轴上,点B点反比例函数(k≠0)的第一象限内的图象上,OA=3,OC=5,动点P在轴的上方,且满足
(1)若点P在这个反比例函数的图象上,求点P的坐标;
(2)连接PO、PA,求PO+PA的最小值;
(3)若点Q在平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com