精英家教网 > 初中数学 > 题目详情
11.阅读下面的文字,完成解答过程.
(1)$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$,则$\frac{1}{2007×2008}$=$\frac{1}{2007}$-$\frac{1}{2008}$,并且用含有n的式子表示发现的规律.
(2)根据上述方法计算:$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{2006×2007}$.
(3)根据(1),(2)的计算,我们可以猜测下列结论:$\frac{1}{n(n+k)}$=$\frac{1}{k}$($\frac{1}{n}$-$\frac{1}{n+k}$) (其中n,k均为正整数),并计算$\frac{1}{1×4}$+$\frac{1}{4×7}$+$\frac{1}{7×10}$+…+$\frac{1}{2005×2008}$.

分析 (1)根据题中给出的列子可直接得出结论;
(2)分别计算出$\frac{1}{1×3}$,$\frac{1}{3×5}$,$\frac{1}{5×7}$的值,再进行计算即可;
(3)根据(1)、(2)的结论找出规律,并进行计算即可.

解答 解:(1)∵$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$,
∴$\frac{1}{2007×2008}$=$\frac{1}{2007}$-$\frac{1}{2008}$.
故答案为:$\frac{1}{2007}$-$\frac{1}{2008}$;

(2)∵$\frac{1}{1×3}$=$\frac{1}{3}$=$\frac{1}{2}$(1-$\frac{1}{3}$),$\frac{1}{3×5}$=$\frac{1}{15}$=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$),$\frac{1}{5×7}$=$\frac{1}{35}$=$\frac{1}{2}$($\frac{1}{5}$-$\frac{1}{7}$),
∴$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{2006×2007}$
=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{2006}$-$\frac{1}{2007}$)
=$\frac{1}{2}$(1-$\frac{1}{2007}$)
=$\frac{1003}{2007}$.
故答案为:$\frac{1003}{2007}$;

(3)根据(1),(2)的计算,我们可以猜测下列结论:$\frac{1}{n(n+k)}$=$\frac{1}{k}$($\frac{1}{n}$-$\frac{1}{n+k}$).
$\frac{1}{1×4}$+$\frac{1}{4×7}$+$\frac{1}{7×10}$+…+$\frac{1}{2005×2008}$=$\frac{1}{3}$(1-$\frac{1}{4}$+$\frac{1}{4}$-$\frac{1}{7}$+$\frac{1}{7}$-$\frac{1}{10}$+…+$\frac{1}{2005}$-$\frac{1}{2008}$)=$\frac{669}{2008}$.
故答案为:$\frac{1}{k}$($\frac{1}{n}$-$\frac{1}{n+k}$).

点评 本题考查的是有理数的混合运算,根据题意找出规律是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.当x=-4时,代数式3x-4与-2x+8互为相反数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知抛物线y=ax2+bx+3c(b<0)交x轴于A、B两点(A在B点左侧),交y轴负半轴于点C,对称轴为直线$x=-\frac{b}{2}$.
(1)当b=c=-4时,求抛物线在x轴上截得的线段长;
(2)如图,过点B的直线交y轴于点D,且BD⊥AC于点E,若OE平分∠AEB,CD=2OD,求抛物线的解析式;
(3)在(2)的条件下,已知M、N是抛物线上两点,且以M、N、O、B为顶点的四边形是以OB为对角线的平行四边形,求直线MN的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:如图,BE⊥CD,BE=DE,BC=DA.
求证:
(1)△BEC≌△DAE;
(2)DF⊥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某公司今年投资100万元购买生产设备,生产某种产品,已知这种产品的生产成本为每件10元,经过市场调研发现,该产品的销售单价定在15元到30元之间较为合理,生产的产品能全部销售,且该产品的年销售量y(万元)与销售单价x(元/件)之间的函数关系式为y=40-x(15≤x≤30).
(1)当销售单价定为每件26元时,该产品的年销售量为多少万件?
(2)求今年的年获利W(万元)与销售单价x(元/件)之间的函数关系式;
(3)求今年的年获利W(万元)的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.二次函数y=ax2+bx+c的图象如图所示,下列结论中:①b<0;②c<0;③4a+2b+c>0;④(a+c)2<b2;⑤b+2a=0;其中正确的是①②④⑤(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.
(1)△DCF可以看做是△BCE绕点C旋转某个角度得到的吗?说明理由.         
(2)若∠CEB=60°,求∠EFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,⊙I为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为21,BC边的长为6,△ADE的周长为9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图②是4×4网格,每个小正方形的边长都为1,请用图案①作为基本图案,通过平移,轴对称,旋转变换,设计两个不同的精美图案,使它们满足:①既是轴对称图形,又是中心对称图形;②所作图案用阴影标识,且阴影部分面积为4.

查看答案和解析>>

同步练习册答案