分析 根据三角形内切圆的性质及切线长定理可得DM=DP,BN=BM,CN=CQ,EQ=EP,则BM+CQ=6,所以△ADE的周长=AD+DE+AE=AD+AE+DM+EQ,代入求出即可.
解答 解:∵△ABC的周长为21,BC=6,
∴AC+AB=21-6=15,
设⊙I与△ABC的三边AB、BC、AC的切点为M、N、Q,切DE为P,![]()
∵DM=DP,BN=BM,CN=CQ,EQ=EP,
∴BM+CQ=BN+CN=BC=6,
∴△ADE的周长=AD+DE+AE=AD+AE+DP+PE
=AD+DM+AE+EQ
=AB-BM+AC-CQ
=AC+AB-(BM+CQ)
=15-6=9,
故答案为9.
点评 本题考查了切线长定理,理解定理,找出图形中存在的相等的线段是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com