精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:① a+b+c<0;② a-b+c<0;③ b+2a<0;④ abc>0 .其中所有正确结论的序号是(   )
A.③④B.②③C.①④D.①②③
B

试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
①当x=1时,y=a+b+c=0,故本选项错误;
②当x=-1时,图象与x轴交点负半轴明显大于-1,∴y=a-b+c<0,故本选项正确;
③由抛物线的开口向下知a<0,
∵对称轴为1>x=->0,
∴2a+b<0,
故本选项正确;
④对称轴为x=->0,
∴a、b异号,即b>0,
∴abc<0,
故本选项错误;
∴正确结论的序号为②③.
故选B.
点评:二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;
(2)b由对称轴和a的符号确定:由对称轴公式x=-判断符号;
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;
(4)当x=1时,可以确定y=a+b+C的值;当x=-1时,可以确定y=a-b+c的值.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数的图像经过

(1)求二次函数的解析式;
(2)画出二次函数的图像;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用长为32米的篱笆围成一个外形为矩形的花圃,花圃的一边利用原有墙,中间用2道篱笆割成3个小矩形.已知原有墙的最大可利用长度为15米,花圃的面积为S平方米,平行于原有墙的一边BC长为x米.

(1)求S关于x的函数关系式;
(2)当围成的花圃面积为60平方米时,求AB的长;
(3)能否围成面积比60平方米更大的花圃?如果能,那么最大的面积是多少?如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=ax2+bx+c的图角如图,则下列结论:①abc>0;②a+b+c=2;③a>;④b<1.其中正确的结论是(  )
A.①②B.②④C.②③D.③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数(a<0)的图象经过点A(-2,0)、O(0,0)、B(-3,y1)、C(3,y2)四点,则y1与y2的大小关系正确的是(    )
A.y1<y2B.y1>y2C.y1=y2D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若抛物线经过坐标原点,则这个抛物线的顶点坐标是        

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数的图象如图所示,则a___0,b___0,c___0,____0;

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示.当<0时,自变量的取值范围是(    
A.-1<<3B.<-1
C.>3D.<-1或>3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场购进一批单价为5元的日用商品.如果以单价7元销售,每天可售出160件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量每天就相应减少20件。设这种商品的销售单价为x元,商品每天销售这种商品所获得的利润为y元.
(1)给定x的一些值,请计算y的一些值.(每空1分,共4分)
x

7
8
9
10
11

y

320
 
 
 
 

(2)求y与x之间的函数关系式及自变量x的取值范围;(4分)
(3)请探索:当商品的销售单价定为多少元时,该商店销售这种商品获得的利润最大?这时每天销售的商品是多少件?(4分)
x

7
8
9
10
11

y

320
420
480
500
480

查看答案和解析>>

同步练习册答案