精英家教网 > 初中数学 > 题目详情

【题目】点E在正方形ABCD外,BE=4,CE=2,∠BEC=135°,将△BEC绕点B逆时针旋转得到△BFA,求FE,FC的长.

【答案】解:由旋转的性质可得:△ABF≌△CBE,
所以∠ABF=∠CBE,BE=BF,
因为正方形ABCD
所以∠ABC=∠ABF+∠CBF=90°,
所以∠EBF=∠CBE+∠CBF=90°,
所以△BEF为等腰Rt△BEF
根据勾股定理:EF=4
因为∠BEC=135°,∠BEF=45°,
所以∠CEF=90°.
所以△BEF为等腰Rt△BEF
根据勾股定理:CF=6
【解析】先由旋转的性质,得出△ABF≌△CBE进而得出BE=BF,再由正方形的得出∠EBF=∠CBE+∠CBF=90°,判断出△BEF为等腰Rt△BEF,再判断出△BEF为等腰Rt△BEF,用勾股定理即可得出结论.
【考点精析】本题主要考查了正方形的性质和旋转的性质的相关知识点,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC 中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.证明:

(1)BD=DC;
(2)DE是⊙O切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小军和爸爸同时从家骑自行车去图书馆,爸爸先以150/分的速度骑行一段时间,休息了5分钟,再以m/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分)的关系如图所示,请结合图像,解答下列问题:

1a= b= ,m=

2若小军的速度是120/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;

3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某同学做一道数学题已知两个多项式ABB=3x2y-5xyx+7,试求AB这位同学把AB看成AB结果求出的答案为6x2y+12xy-2x-9.

(1)请你替这位同学求出的正确答案

(2)x取任意数值A-3B的值是一个定值y的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD是圆O的内接四边形,BC是圆O的直径,∠ACB=20°,D为弧 的中点,求∠DAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一名工人一天可以加工零件,或者加工零件,每一个零件和两个零件可以组装成一套零件,某车间共有名工人,问应如何安排这些工人,使加工出来的零件刚好可以配套.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B两地相距900m,甲乙两人同时从A地出发匀速前往B地,甲到达B地时乙距B300m.甲到达B地后立刻以原速返回A地,返回途中与乙相遇,相遇后乙也立刻以原速向A地返回.甲、乙离A地的距离y1、y2与他们出发的时间t的函数关系如图所示.

(1)a=   ; b=   

(2)写出点C表示的实际意义   及点C的坐标   

(3)甲出发多长时间,两人相距175m?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据图1,图2所提供的信息,解答下列问题:

(1)2007年海南省城镇居民人均可支配收入为元,比2006年增长%;
(2)求2008年海南省城镇居民人均可支配收入(精确到1元),并补全条形统计图;
(3)根据图1指出:2005﹣2008年海南省城镇居民人均可支配收入逐年(填“增加”或“减少”).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30°.

(1)求证:DC是⊙O的切线.
(2)若BD=1cm,求AC的长.

查看答案和解析>>

同步练习册答案