精英家教网 > 初中数学 > 题目详情
在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为
 
考点:由三视图判断几何体
专题:
分析:易得此几何体有三行,三列,判断出各行各列最少有几个正方体组成即可.
解答:解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,
故答案为:5.
点评:本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需最少正方体的个数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,过C作CD⊥AB于D,求证:CD2=AD•DB.

查看答案和解析>>

科目:初中数学 来源: 题型:

将长为20cm,宽为10cm的长方形白纸,按如图所示的方法粘贴起来,粘合部分的宽为2cm.设x张白纸粘合后的纸条总长度为ycm,
(1)求y与x之间的函数关系式,并画出函数图象,
(2)若x=20,求纸条的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.

小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD-PE=CF;
请运用上述解答中所积累的经验和方法完成下列两题:
【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2
13
dm,AD=3dm,BD=
37
dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A(1,6)和点M(m,n)都在反比例函数y=
k
x
(x>0)的图象上,
(1)k的值为
 

(2)当m=3,求直线AM的解析式;
(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

将二次函数y=2x2-1的图象沿y轴向上平移2个单位,所得图象对应的函数表达式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,∠OAB=20°,则∠C的度数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知三角形的一边a,垂直于a的高h,以及a的对角α,你认为只利用尺规作图能作出这个三角形吗?
 
(填写“能”或“不能”).如果你认为能,简述作法并作出这个三角形;如果你认为不能,说明理由.
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2013年黄石市旅游收入达52644.85万元,比2010年增长了40.7%,用科学记数法表示2013年黄石市旅游收入是(  )元(保留三个有效数字)
A、526×102
B、5.26×104
C、526×106
D、5.26×108

查看答案和解析>>

同步练习册答案