精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形中,为对角线上一点,且,过,分别交。动点从点出发,以每秒1个单位长的速度在射线上运动。动点从点出发,以每秒1个单位长的速度在线段上沿方向运动。以为边作等边。已知两点同时出发,当点返回点时两点同时停止运动。运动时间为.

(1)求线段,当点落在线段上时等于多少

(2)设运动过程中与矩形的重叠部分面积为,请直接写出的函数关系式及自变量的取值范围;

(3)将四边形绕点旋转一周,在此过程中,设直线分别与直线交于点,当是以为底角的等腰三角形时,求的长.

【答案】(1)线段BF=4,当点落在线段上时t=3;(2)见解析;(3).

【解析】

(1)根据矩形的性质,结合已知条件通过解直角三角形即可求解;

(2)分为四种情况,画出图形,求出各个三角形的面积,根据图形即可得出答案

(3)先根据解直角三角形,求得BF的长,再根据旋转求得的长,最后根据四边形BCGF旋转后的两种不同位置进行讨论,求得DN的长.

(1)∵矩形ABCD中,AB=9,AD=,

ABD=30,BD=

DE=2BE,FGBD,

∴DE=4,BE=2

∴当点R落在线段CD时,ΔPQR的高为,则底为6,所以t=3.

(2)四种情况如图所示图1,图2,3,图4

1所示,当时,

2所示,当时,

3 所示,当时,

4所示,当时,

(3)由(1)得BF=4,由旋转可得BF'=BF=4,F'BC'=FBC=90°,BFG=BF'G'=60°,①如图5,当DMN是以∠MDN,MND为底角的等腰三角形时,∠N=30°,

tanBNF'=

,即BN=4

DN=BD+BN=6+4=10

②如图6,当DMN是以∠MDN.NMD为底角的等腰三角形时,∠BNM=60°=BF'M,此时,F'N重合,故BF'=BN=4,

DN=BD﹣BN=6﹣4.

故答案为:106﹣4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,点P为直径BA延长线上一点,PD切⊙O于点D、过点BBHPH,点H为垂足,BH交⊙O于点C,连接BD,CD.

(1)求证:BD平分∠ABH;

(2)若CD=2,ABD=30°,求⊙O的直径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:

(1)二次函数和反比例函数的关系式.

(2)弹珠在轨道上行驶的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;

(2)把t=2代入(1)中二次函数解析式即可.

详解:(1)v=at2的图象经过点(1,2),

a=2.

∴二次函数的解析式为:v=2t2,(0≤t≤2);

设反比例函数的解析式为v=

由题意知,图象经过点(2,8),

k=16,

∴反比例函数的解析式为v=(2<t≤5);

(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,

∴弹珠在轨道上行驶的最大速度在2秒末,为8/分.

点睛:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.

型】解答
束】
24

【题目】阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.

(1)在图1中证明小胖的发现;

借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:

(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;

(3)如图3,在ABC中,AB=AC,BAC=m°,点E为ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求EAF的度数(用含有m的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种饮料,平均每天可售出100箱,每箱利润为120元,为了扩大销量,尽快减少库存,超市准备适当降价,据测算,若每箱降价2元,则每天可多售出4箱.

(1)如果要使每天销售该饮料获利14000元,则每箱应降价多少元.

(2)每天销售该饮料获利能达到14500元吗?若能,则每箱应降价多少?若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点在边长为2的正方形内,连结,则的最小值为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线交于点O,以AD为边向外作RtADE,AED=90°,连接OE,DE=6,OE=8,则另一直角边AE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.

(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.

(2)求取出的两张卡片上的数字之和为偶数的概率P.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,对角线相交于点,将直线绕点顺时针旋转一个角度),分别交线段于点,已知,连接.

1)如图①,在旋转的过程中,请写出线段的数量关系,并证明;

2)如图②,当时,请写出线段的数量关系,并证明;

3)如图③,当时,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.

(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.

类别

频数(人数)

频率

武术类

0.25

书画类

20

0.20

棋牌类

15

b

器乐类

合计

a

1.00

(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.

请你根据以上图表提供的信息解答下列问题:

①a=_____,b=_____

②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____

③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.

查看答案和解析>>

同步练习册答案