【题目】(2016·毕节中考)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
【答案】(1)见解析 (2)
【解析】试题分析: (1)由旋转的性质得到三角形ABC与三角形ADE全等,以及AB=AC,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS得到三角形AEC与三角形ADB全等即可;
(2)根据∠BAC=45°,四边形ADFC是菱形,得到∠DBA=∠BAC=45°,再由AB=AD,得到三角形ABD为等腰直角三角形,求出BD的长,由BD-DF求出BF的长即可.
试题解析:
(1)证明:由旋转的性质得△ABC≌△ADE,且AB=AC,
∴AE=AD=AC=AB,∠BAC=∠DAE,
∴∠BAC+∠BAE=∠DAE+∠BAE,
即∠CAE=∠BAD.
在△AEC和△ADB中,
∵AE=AD,∠CAE=∠BAD,AC=AB,
∴△AEC≌△ADB(SAS);
(2)∵四边形ADFC是菱形,
∴DF=AC=AB=2,AC∥DF.
又∵∠BAC=45°,
∴∠DBA=∠BAC=45°.
由(1)可知AB=AD,
∴∠DBA=∠BDA=45°,
∴△ABD为直角边长为2的等腰直角三角形,
∴BD2=2AB2,
即BD=2,
∴BF=BD-DF=2-2.
点睛: 此题考查了旋转的性质,全等三角形的判定与性质,以及菱形的性质,熟练掌握旋转的性质是解本题的关键.
科目:初中数学 来源: 题型:
【题目】如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),D为⊙C在第一象限内的一点,且∠ODB=60°.
(1)求⊙C的半径;
(2)求圆心C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.
(1)求证:AC·CD=CP·BP;
(2)若AB=10,BC=12,当PD∥AB时,求BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AD∥BC,∠ABC=,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是( )
A. 1个
B. 2个
C. 3个
D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2014年12月10日,连通杭州、南昌、长沙三座省会城市的杭长高铁开通,这给勇于创业的衢州人民的出行带来了极大的方便.杭长高铁总投资1300亿元,1300亿元用科学记数法表示为( )
A.13×1010元
B.1.3×1010元
C.0.13×1012元
D.1.3×1011元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:
(1)月销量y(件)与售价x(元)的关系为y=-2x+400;
(2)工商部门限制销售价x的范围为70≤x≤150(计算月利润时不考虑其他成本).
给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________(填序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com