精英家教网 > 初中数学 > 题目详情
如图,已知二次函数y=-x2+bx+c的图象与x轴交于点A、B,与y轴交于点C,其顶点为D,且直线DC的解析式为y=x+3.
(1)求二次函数的解析式;
(2)求△ABC外接圆的半径及外心的坐标;
(3)若点P是第一象限内抛物线上一动点,求四边形ACPB的面积最大值.
分析:(1)抛物线与直线CD的函数图象交于y轴上的点C,那么这两个函数的解析式中的常数项相同,即c=3,因此只需求出b的值即可;首先用b表示出抛物线的顶点坐标,而这个顶点恰好在直线CD上,因此代入直线CD的解析式中即可得到待定系数b的值,由此得解.
(2)△ABC的外心到三角形三个顶点的距离都相同,即为△ABC的外接圆半径;因此先设出该外心的坐标,然后表示出三个半径长,令它们相等即可,可据此思路解题.
(3)四边形ACPB中,△ABC的面积是个定值,因此△CPB的面积最大时,四边形的面积最大;可以过点P作y轴的平行线,交直线BC于点E,首先要求出线段PE的长度表达式,以PE为底、OB为高,即可得到△CPB的面积表达式,由此可得到关于四边形ACPB面积的函数表达式,再根据函数的性质解题即可.
解答:解:(1)∵二次函数:y=-x2+bx+c的图象与直线DC:y=x+3交于点C,
∴c=3,C(0,3);
二次函数 y=-x2+bx+3中,顶点D (
b
2
b2+12
4
),代入直线DC y=x+3中,得:
b
2
+3=
b2+12
4

解得 b1=0(舍)、b2=2;
故二次函数的解析式:y=-x2+2x+3.

(2)由(1)的抛物线解析式知:A(-1,0)、B(3,0)、C(0,3);
设△ABC的外心M(x,y),则:
AM2=(x+1)2+y2、BM2=(x-3)2+y2、CM2=x2+(y-3)2
由于AM=BM=CM,所以有:
(x+1)2+y2=(x-3)2+y2
(x+1)2+y2=x2+(y-3)2

解得
x=1
y=1

此时 AM=BM=CM=
5

综上,△ABC的外接圆半径为
5
,外心的坐标(1,1).

(3)如右图,过点P作PE∥y轴,交直线BC于点E;
由B(3,0)、C(0,3)知,直线BC:y=-x+3;
设点P(x,-x2+2x+3),则E(x,-x+3),
PE=-x2+2x+3-(-x+3)=-x2+3x;
则S四边形ACPB=S△ACB+S△CPB
=
1
2
AB•OC+
1
2
PE•OB
=
1
2
×4×3+
1
2
×(-x2+3x)×3
=-
3
2
(x-
3
2
2+
75
8

综上,四边形ACPB的最大面积最大值为
75
8
点评:此题主要考查的是:函数解析式的确定、三角形的外接圆以及图形面积的求法等知识;(3)题的解法较多,还可以过点P作x轴的垂线,将四边形的面积分割成两个小直角三角形以及一个直角梯形三部分,解此类题目要注意结合图形,找出相关图形间的面积和差关系,根据已知条件选择简便的解题方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知二次函数图象的顶点坐标为C(1,1),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(
5
2
13
4
),B点在y轴上,直线与x轴的交点为F,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于E点.
(1)求k,m的值及这个二次函数的解析式;
(2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在点P,使得以点P、E、D为顶点的精英家教网三角形与△BOF相似?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax2+bx+3(a≠0)的图象与x轴交于点A(-1,0)和点B(3,0)两点(点A在点B的左边),与y轴交于点C.
(1)求此二次函数的解析式,并写出它的对称轴;
(2)若直线l:y=kx(k>0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出点D的坐标;若不存在,请说明理由;
(3)若直线l′:y=m与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+b与该二次函数的图象交于A、B两点,其中点A的坐标为(3,4),点B在y轴上.点P为线段AB上的一个动点(点P与A、B不重合),过点P作x轴的垂线与该二次函数的图象交于点E.
(1)求b的值及这个二次函数的关系式;
(2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)若点D为直线AB与该二次函数的图象对称轴的交点,则四边形DCEP能否构成平行四边形?如果能,请求出此时P点的坐标;如果不能,请说明理由.
(4)以PE为直径的圆能否与y轴相切?如果能,请求出点P的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点C(0,-5).
(1)求该二次函数的解析式和它与x轴的另一个交点B的坐标.
(2)在上面所求二次函数的对称轴上存在一点P(2,-2),连接OP,找出x轴上所有点M的坐标,使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡水一模)如图,已知二次函数y=-
12
x2+bx+c
的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积;
(3)若抛物线的顶点为D,在y轴上是否存在一点P,使得△PAD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案