精英家教网 > 初中数学 > 题目详情

如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若AB=3,BC=4,求点D到CE的距离.

(1)证明:∵四边形ABCD是矩形,
∴AC=BD,OA=OC=,OB=OD=
∴OC=OD,
又∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∴四边形OCED是菱形.

(2)解:如图,过点D作DF⊥CE于点F,过点C作CG⊥BD于点G,
∵CE∥BD,
∴DF=CG.
∵四边形ABCD是矩形,
∴DC=AB=3,∠DCB=90°.

又∵

∴DF=
即点D到CE的距离为
分析:(1)根据矩形性质求出OD=OC,根据平行四边形和菱形的判定推出即可;
(2)过点D作DF⊥CE于点F,过点C作CG⊥BD于点G,求出DF=CG,求出BD,根据三角形面积公式求出CG,即可得出答案.
点评:本题考查了矩形的性质,平行四边形的判定,菱形的判定,三角形的面积,勾股定理等知识点的应用,主要考查学生运用定理进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=
kx
的图象上,若点A的坐标为(-2,-2),则k的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD的一边AD在x轴上,对角线AC、BD交于点E,过B点的双曲线y=
kx
(x>0)
恰好经过点E,AB=4,AD=2,则K的值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•葫芦岛)如图,矩形ABCD的对角线交于点O,∠BOC=60°,AD=3,动点P从点A出发,沿折线AD-DO以每秒1个单位长的速度运动到点O停止.设运动时间为x秒,y=S△POC,则y与x的函数关系大致为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形ABCD的对角线交于O点,∠AOB=120°,AD=5cm,则AC=
10
10
cm.

查看答案和解析>>

同步练习册答案