精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.

(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2,求 的值.

【答案】
(1)

证明:如图,连结OD,

∵AD平分∠BAC,

∴∠DAF=∠DAO,

∵OA=OD,

∴∠OAD=∠ODA,

∴∠DAF=∠ODA,

∴AF∥OD,

∵DF⊥AC,∴OD⊥DF,

∴DF是⊙O的切线


(2)

解:①连接BD,

∵直径AB,

∴∠ADB=90°,

∵圆O与BE相切,

∴∠ABE=90°,

∵∠DAB+∠DBA=∠DBA+∠DBE=90°,

∴∠DAB=∠DBE,

∴∠DBE=∠FAD,

∵∠BDE=∠AFD=90°,

∴△BDE∽△AFD,


【解析】(1)连接OD.根据切线的判定定理,只需证DF⊥OD即可;(2)①连接BD.根据BE、DF两切线的性质证明△BDE∽△ABE;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以△BDE∽△AFD;最后由相似三角形的对应边成比例求得
【考点精析】认真审题,首先需要了解相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE,若BE=13,BC=10,则sinC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y= (k为常数,k≠1).
(Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;
(Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;
(Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点A(x1 , y1)、B(x2 , y2),当y1>y2时,试比较x1与x2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A,B两点,与y轴交于C点,其顶点为D,且k>0,若△ABC与△ABD的面积比为1:4,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C.∠DAB=∠B=30°.
(1)直线BD是否与⊙O相切?为什么?
(2)连接CD,若CD=5,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从足球、篮球、排球、其它等四个方面调查了若干名学生,并绘制成“折线统计图”与“扇形统计图”.请你根据图中提供的部分信息解答下列问题:

(1)在这次调查活动中,一共调查了名学生;
(2)“足球”所在扇形的圆心角是度;
(3)补全折线统计图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015朝阳)如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC于点E,且∠BDE=∠A.

(1)判断DE与⊙O的位置关系并说明理由;
(2)若AC=16,tanA= , 求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【发现】如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)

(1)【思考】如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?
请证明点D也不在⊙O内.
(2)【应用】
利用【发现】和【思考】中的结论解决问题:
若四边形ABCD中,AD∥BC,∠CAD=90°,点E在边AB上,CE⊥DE.
(1)作∠ADF=∠AED,交CA的延长线于点F(如图④),求证:DF为Rt△ACD的外接圆的切线;

(2)如图⑤,点G在BC的延长线上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的长.

查看答案和解析>>

同步练习册答案