【题目】如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).
(1)数轴上点B对应的数是________,点P对应的数是_________(用t的式了表示);
(2)动点Q从点B与点P同时发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AD平分∠BAC交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.
(1)试判断DE与⊙O的位置关系,并证明你的结论;
(2)若∠E=60°,⊙O的半径为5,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数的图象如图,有以下结论:
①m<0;
②在每一个分支上,y随x的增大而增大;
③若点A(-1,a)、B(2,b)在图象上,则a<b;
④若点P(x,y)在图象上,则点P1(-x,-y)也在图象上.
其中正确结论的个数为( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线C1:
(1) ① 无论m取何值,抛物线经过定点P
② 随着m的取值的变化,顶点M(x,y)随之变化,y是x的函数,则点M满足的函数C2的关系式为__________________
(2) 如图1,抛物线C1与x轴仅有一个公共点,请在图1画出顶点M满足的函数C2的大致图象,平行于y轴的直线l分别交C1、C2于点A、B.若△PAB为等腰直角三角形,判断直线l满足的条件,并说明理由
(3) 如图2,二次函数的图象C1的顶点M在第二象限、交x轴于另一点C,抛物线上点M与点P之间一点D的横坐标为-2,连接PD、CD、CM、DM.若S△PCD=S△MCD,求二次函数的解析式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上有三个点A、B、C,表示的数分别是-4、-2、3,请回答:
(1)若C、B两点的距离与A、B两点距离相等,则需将点C向左移动________个单位;
(2)若移动A、B、C三点中的两点,使三个点表示的数相同,移动方法有________种,其中移动所走的距离之和最小的是________个单位;
(3)若在B处有一小青蛙,一步跳一个单位长,小青蛙第一次先向左跳一步,第2次向右跳3步,第3次向再向左跳5步,第4次再向右跳7步……,按此规律继续下去,那么跳第100次时落脚点表示的数是________;
(4)若有两只小青蛙M、N,它们在数轴上的点表示的数分别为整数x、y,且|x-2|+|y+3|=2,求两只青蛙M、N之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).
(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;
(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.
①试求△PAD的面积的最大值;
②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB=3,BC=10,∠A=45°,点E是边AD上一动点,将△AEB沿直线BE折叠,得到△FEB,设BF与AD交于点M,当BF与ABCD的一边垂直时,DM的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了帮助湖北省武汉市防控新冠肺炎,某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物资共2000件送往灾区,已知每件甲种物资的价格比每件乙种物资的价格贵10元,用350元购买甲种物资的件数恰好与用300元购买乙种物资的件数相同.
(1)求甲、乙两种救灾物资每件的价格各是多少元?
(2)经调查,灾区对甲种物资的需求量不少于乙种物资的1.5倍,若该爱心组织如何购买这2000件物资,才能使得购买资金最少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com