【题目】如图,△ABC内接于⊙O,AD平分∠BAC交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.
(1)试判断DE与⊙O的位置关系,并证明你的结论;
(2)若∠E=60°,⊙O的半径为5,求AB的长.
【答案】(1)DE与⊙O相切,理由见解析;(2).
【解析】试题分析:(1)连接DO并延长到圆上一点N,交BC于点F.由AD平分∠BAC可得 ,由垂径定理可得DO⊥BC,再由DE∥BC,即可推导得出;
(2)连接AO并延长到圆上一点M,连接BM.由DE∥BC,可推导得出∠M=60°,现利用勾股定理即可得出AB的长.
试题解析:(1)DE与⊙O相切,理由如下:
连接DO并延长到圆上一点N,交BC于点F.
∵AD平分∠BAC交⊙O于点D,∴∠BAD=∠DAC,
∴ ,∴DO⊥BC.
∵DE∥BC,∴∠EDO=90°,∴DE与⊙O相切;
(2)连接AO并延长到圆上一点M,连接BM.
∵DE∥BC,∴∠ACB=∠E=60°,∴∠M=60°.
∵⊙O的半径为5,∴AM=10,∴BM=5,则.
科目:初中数学 来源: 题型:
【题目】(1)如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;
(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数;
(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;
(4)从(1)(2)(3)的结果中你能看出什么规律?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在函数y=kx(k>0)的图象上有三点A1(x1,y1),A2(x2,y2),A3(x3,y3),已知x1<x2<0<x3,则下列各式中正确的是( )
A. y1<0<y3 B. y3<0<y1 C. y2<y1<y3 D. y3<y1<y2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(庆阳中考)现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了了解学生的视力变化情况,从全市九年级随机抽取了1 500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.
解答下列问题:
(1)图中D所在扇形的圆心角度数为______;
(2)若2016年全市共有30 000名九年级学生,请你估计视力在4.9以下的学生约有多少名?
(3)根据扇形统计图信息,你觉得中学生应该如何保护视力?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,是全国最大的瓷碗造型建筑坐落于江西景德镇,整体造型概念来自“宋代影青斗笠碗”,造型庄重典雅,象征“万瓷之母”.小敏为了计算该建筑物的横断面(瓷碗横断面ABCD为等腰梯形)的高度如图2,她站在与瓷碗底部AB位于同一水平面的点P处测得瓷碗顶部点D的仰角为45°,而后沿着一段坡度为0.44的小坡PQ步行到点Q(此过程中AD、AP、PQ始终处于同一平面)后测得点D的仰角减少了5°.
已知坡PQ的水平距离为20米,小敏身高忽略不计.
(1)试计算该瓷碗建筑物的高度?
(2)小敏测得AD与水平面夹角约为58°,底座直径AB约为20米,试计算碗口CD的直径为多少米?
坡度:坡与水平线夹角的正切值.
参考数据:sin40°≈0.64,tan40°≈0.84,sin58°≈0.85,tan58°≈1.60.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.
(1)求该店有客房多少间?房客多少人?
(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某市120000名初中学生的视力情况,某校数学兴趣小组,并进行整理分析.
(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.
(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.
请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com