精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE= ;④AF=2 ,其中正确结论的个数有(
A.1个
B.2个
C.3个
D.4个

【答案】C
【解析】解:在矩形ABCD中,∵∠BAD=90°, ∵AE⊥BD,
∴∠AED=90°,
∴∠ADE+∠DAE=∠DAE+∠BAE=90°,
∴∠BAE=∠ADB,
∵∠CAD=∠ADB,
∴∠BAE=∠CAD,故①正确;
∵BC=4,CD=2,
∴tan∠DBC= =
∴∠DBC≠30°,故②错误;
∵BD= =2
∵AB=CD=2,AD=BC=4,
∵△ABE∽△DBA,


∴AE= ;故③正确;
∵CF平分∠BCD,
∴∠BCF=45°,
∴∠ACF=45°﹣∠ACB,
∵AD∥BC,
∴∠DAC=∠BAE=∠ACB,
∴∠EAC=90°﹣2∠ACB,
∴∠EAC=2∠ACF,
∵∠EAC=∠ACF+∠F,
∴∠ACF=∠F,
∴AF=AC,
∵AC=BD=2
∴AF=2 ,故④正确;
故选C.
【考点精析】根据题目的已知条件,利用矩形的性质和相似三角形的判定与性质的相关知识可以得到问题的答案,需要掌握矩形的四个角都是直角,矩形的对角线相等;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算:﹣24 +|1﹣4sin60°|+(π﹣ 0
(2)解方程:2x2﹣4x﹣1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度. 棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是( )
A.(π﹣3)0=1
B.=±3
C.21=﹣2
D.(﹣a23=a6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.
(1)求证:CE=CB;
(2)若AC=2 ,CE= ,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=2 ,则图中阴影部分的面积为 . (结果不取近似值)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3 , 以OA3为直角边作第三个等腰直角三角形OA3A4 , …,依此规律,得到等腰直角三角形OA2017A2018 , 则点A2017的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.
(长度均精确到1m,参考数据: ≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)

(1)求主桥AB的长度;
(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.

查看答案和解析>>

同步练习册答案