精英家教网 > 初中数学 > 题目详情
如图,AD是等腰三角形ABC的底边BC上的高,DE∥AB,交AC于点E,试找出图中的一个等腰三角形(△ABC除外),并说明理由.我找的等腰三角形是
 
理由:
考点:等腰三角形的判定与性质
专题:
分析:由AD是等腰三角形ABC的底边BC上的高,DE∥AB,易得△EDC是等腰三角形,又由AD⊥BC,易得△AED是等腰三角形.
解答:解:△EDC与△AED.
理由:∵△ABC是等腰三角形,AB=AC,
∴∠B=∠C,
∵DE∥AB,
∴∠EDC=∠B,
∴∠EDC=∠C,
∴ED=EC,
即△EDC是等腰三角形;
∵AD⊥BC,
∴∠EDC+∠ADE=90°,∠C+∠CAD=90°,
∴∠ADE=∠CAD,
∴AE=ED,
∴△AED是等腰三角形.
故答案为:△EDC与△AED.
点评:本题主要考查等腰三角形的判定与性质以及平行线的性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,点A在反比例函数y=
k
x
(x>0)的图象上,过点A作AD⊥y轴于点D,延长AD至点C,使AD=DC,过点A作AB⊥x轴于点B,连结BC交y轴于点E.若△ABC的面积为4,则k的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B,取∠ABD=150°,BD=500米,∠D=60°.要使A,C,E成一直线.那么开挖点E离点D的距离是(  )
A、200米B、250米
C、300米D、350米

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠ACB=90°,AC=3,BC=4.D是BC边上一点,直线DE⊥BC于D,交AB于E,CF∥AB交直线DE于F.设CD=x.
(1)当x取何值时,四边形EACF是菱形?请说明理由;
(2)当x取何值时,四边形EACD的面积等于3?

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读下面材料,并解决问题:
(1)如图(1),等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5欲求∠APB的度数,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.

请将下列解题过程补充完整
∵△ACP′≌△ABP
∴AP′=
 
=3、CP′=
 
=4、∠
 
=∠APB
由题意知旋转角∠PA P′=60°
∴△AP P′为
 
三角形
P P′=AP=3,∠A P′P=60°
易证△P P′C为直角三角形,且∠P P′C=90°
∴∠APB=∠AP′C=∠A P′P+∠P P′C=
 
°+
 
°=
 
°
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(2),△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2

查看答案和解析>>

科目:初中数学 来源: 题型:

求证:若m=20092+20092×20102+20102,则m一定是完全平方数且是奇数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在一个不透明的盒子里,装有四个分别标有数字1,-2,-3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)小明抽到的数字是负数的概率是
 

(2)用列表法或画树状图表示出(x,y)的所有可能出现的结果;
(3)求小明、小华各取一次小球所确定的点(x,y)落在第二象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程:
(1)2x2+1=3x;  
(2)(x-2)(x-5)=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,四边形ABCD是正方形,AC、BD交于点O,AE平分∠BAC,DF垂直AE,交AB于点F,交AE于点H,交AC于点G.求证:
(1)OG=
1
2
BF

(2)AE=DF.

查看答案和解析>>

同步练习册答案