【题目】如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+ =0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=
(1)求点B的坐标;
(2)求直线BN的解析式;
(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.
【答案】
(1)
解:∵|x﹣15|+ =0,
∴x=15,y=13,
∴OA=BC=15,AB=OC=13,
∴B(15,13);
(2)
解:如图1,过D作EF⊥OA于点E,交CB于点F,
由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°,
∵tan∠CBD= ,
∴ = ,且BF2+DF2=BD2=152,解得BF=12,DF=9,
∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,
∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,
∴∠ONM=∠CBD,
∴ = ,
∵DE∥ON,
∴ = = ,且OE=3,
∴ = ,解得OM=6,
∴ON=8,即N(0,8),
把N、B的坐标代入y=kx+b可得 ,解得 ,
∴直线BN的解析式为y= x+8;
(3)
解:设直线BN平移后交y轴于点N′,交AB于点B′,
当点N′在x轴上方,即0<t≤8时,如图2,
由题意可知四边形BNN′B′为平行四边形,且NN′=t,
∴S=NN′OA=15t;
当点N′在y轴负半轴上,即8<t≤13时,设直线B′N′交x轴于点G,如图3,
∵NN′=t,
∴可设直线B′N′解析式为y= x+8﹣t,
令y=0,可得x=3t﹣24,
∴OG=24,
∵ON=8,NN′=t,
∴ON′=t﹣8,
∴S=S四边形BNN′B′﹣S△OGN′=15t﹣ (t﹣8)(3t﹣24)=﹣ t2+39t﹣96;
综上可知S与t的函数关系式为S= .
【解析】(1)由非负数的性质可求得x、y的值,则可求得B点坐标;(2)过D作EF⊥OA于点E,交CB于点F,由条件可求得D点坐标,且可求得 = ,结合DE∥ON,利用平行线分线段成比例可求得OM和ON的长,则可求得N点坐标,利用待定系数法可求得直线BN的解析式;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方时,可知S即为BNN′B′的面积,当N′在y轴的负半轴上时,可用t表示出直线B′N′的解析式,设交x轴于点G,可用t表示出G点坐标,由S=S四边形BNN′B′﹣S△OGN′ , 可分别得到S与t的函数关系式.
科目:初中数学 来源: 题型:
【题目】某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.
请根据图中信息,解答下列问题:
(1)参加初赛的选手共有名,请补全频数分布直方图;
(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?
(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.
(1)求证:DE=DC;
(2)求证:AF⊥BF;
(3)当AFGF=28时,请直接写出CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣ x+3交于C、D两点.连接BD、AD.
(1)求m的值.
(2)抛物线上有一点P,满足S△ABP=4S△ABD , 求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B﹣A﹣D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之间的函数图象大致为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点.
(1)求证:EF是⊙O的切线;
(2)求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.
(1)求这个反比函数的解析式;
(2)求△ACD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y= (k≠0)的图象过点C,则该反比例函数的表达式为( )
A.y=
B.y=
C.y=
D.y=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com