【题目】如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣ x+3交于C、D两点.连接BD、AD.
(1)求m的值.
(2)抛物线上有一点P,满足S△ABP=4S△ABD , 求点P的坐标.
【答案】
(1)解:∵抛物线y=﹣x2+mx+3过(3,0),
∴0=﹣9+3m+3,
∴m=2
(2)解:由 ,得 , ,
∴D( ,﹣ ),
∵S△ABP=4S△ABD,
∴ AB×|yP|=4× AB× ,
∴|yP|=9,yP=±9,
当y=9时,﹣x2+2x+3=9,无实数解,
当y=﹣9时,﹣x2+2x+3=﹣9,x1=1+ ,x2=1﹣ ,
∴P(1+ ,﹣9)或P(1﹣ ,﹣9).
【解析】(1)利用待定系数法即可解决问题;(2)利用方程组首先求出点D坐标.由面积关系,推出点P的纵坐标,再利用待定系数法求出点P的坐标即可;
【考点精析】解答此题的关键在于理解抛物线与坐标轴的交点的相关知识,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
科目:初中数学 来源: 题型:
【题目】如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点C,其顶点记为M,自变量x=﹣1和x=5对应的函数值相等.若点M在直线l:y=﹣12x+16上,点(3,﹣4)在抛物线上.
(1)求该抛物线的解析式;
(2)设y=ax2+bx+c对称轴右侧x轴上方的图象上任一点为P,在x轴上有一点A(﹣ ,0),试比较锐角∠PCO与∠ACO的大小(不必证明),并写出相应的P点横坐标x的取值范围.
(3)直线l与抛物线另一交点记为B,Q为线段BM上一动点(点Q不与M重合),设Q点坐标为(t,n),过Q作QH⊥x轴于点H,将以点Q,H,O,C为顶点的四边形的面积S表示为t的函数,标出自变量t的取值范围,并求出S可能取得的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生每天参加户外活动的情况,随机抽查了100名学生每天参加户外活动的时间情况,并将抽查结果绘制成如图所示的扇形统计图.
请你根据图中提供的信息解答下列问题:
(1)请直接写出图a的值,并求出本次抽查中学生每天参加户外活动时间的中位数;
(2)求本次抽查中学生每天参加户外活动的平均时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是( )
A.22
B.20
C.22或20
D.18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+ =0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=
(1)求点B的坐标;
(2)求直线BN的解析式;
(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.
③当x=2时,y=5;④3是方程ax2+(b﹣1)x+c=0的一个根;
其中正确的有 . (填正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以坐标原点O为圆心,作半径为2的圆,若直线y=﹣x+b与⊙O相交,则b的取值范围是( )
A.0≤b<2
B.﹣2
C.﹣2 2
D.﹣2 <b<2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com