【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点C,其顶点记为M,自变量x=﹣1和x=5对应的函数值相等.若点M在直线l:y=﹣12x+16上,点(3,﹣4)在抛物线上.
(1)求该抛物线的解析式;
(2)设y=ax2+bx+c对称轴右侧x轴上方的图象上任一点为P,在x轴上有一点A(﹣ ,0),试比较锐角∠PCO与∠ACO的大小(不必证明),并写出相应的P点横坐标x的取值范围.
(3)直线l与抛物线另一交点记为B,Q为线段BM上一动点(点Q不与M重合),设Q点坐标为(t,n),过Q作QH⊥x轴于点H,将以点Q,H,O,C为顶点的四边形的面积S表示为t的函数,标出自变量t的取值范围,并求出S可能取得的最大值.
【答案】
(1)
解:∵自变量x=﹣1和x=5对应的函数值相等,
∴抛物线的对称轴为x=2.
∵点M在直线l:y=﹣12x+16上,
∴yM=﹣8.
设抛物线的解析式为y=a(x﹣2)2﹣8.
将(3,﹣4)代入得:a﹣8=﹣4,解得:a=4.
∴抛物线的解析式为y=4(x﹣2)2﹣8,整理得:y=4x2﹣16x+8
(2)
解:由题意得:C(0,8),M(2,﹣8),
如图,当∠PCO=∠ACO时,过P作PH⊥y轴于H,
设CP的延长线交x轴于D,
则△ACD是等腰三角形,
∴OD=OA= ,
∵P点的横坐标是x,
∴P点的纵坐标为4x2﹣16x+8,
∵PH∥OD,
∴△CHP∽△COD,
∴ ,
∴x= ,
过C作CE∥x轴交抛物线与E,
则CE=4,
设抛物线与x轴交于F,B,
则B(2+ ,0),
∴y=ax2+bx+c对称轴右侧x轴上方的图象上任一点为P,
∴当x= 时,∠PCO=∠ACO,
当2+ <x< 时,∠PCO<∠ACO,
当 <x<4时,∠PCO>∠ACO
(3)
解:解方程组 ,
解得: ,
∴D(﹣1,28),
∵Q为线段BM上一动点(点Q不与M重合),
∴Q(t,﹣12t+16)(﹣1≤t<2),
①当﹣1≤t<0时,S= (﹣t)(﹣12t+16﹣8)+8(﹣t)=6t2﹣12t=6(t﹣1)2﹣6,
∵﹣1≤t<0,
∴当t=﹣1时,S最大=18;
②当0<t< 时,S= t8+ t(﹣12t+16)=﹣6t2+12t=﹣6(t﹣1)2+6,∵0<t< ,
∴当t=﹣1时,S最大=6;
③当 <t<2时,S= t8+ (12t﹣16)=6t2﹣4t=6(t﹣ )2﹣ ,
∵ <t<2,
∴此时S为最大值.
【解析】(1)根据已知条件得到抛物线的对称轴为x=2.设抛物线的解析式为y=a(x﹣2)2﹣8.将(3,﹣4)代入得抛物线的解析式为y=4(x﹣2)2﹣8,即可得到结论;(2)由题意得:C(0,8),M(2,﹣8),如图,当∠PCO=∠ACO时,过P作PH⊥y轴于H,设CP的延长线交x轴于D,则△ACD是等腰三角形,于是得到OD=OA= ,根据相似三角形的性质得到x= ,过C作CE∥x轴交抛物线与E,则CE=4,设抛物线与x轴交于F,B,则B(2+ ,0),于是得到结论;(3)解方程组得到D(﹣1,28得到Q(t,﹣12t+16)(﹣1≤t<2),①当﹣1≤t<0时,②当0<t< 时,③当 <t<2时,求得二次函数的解析式即可得到结论.
【考点精析】本题主要考查了二次函数的性质和二次函数的最值的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=2x与反比例函数y= 在第一象限内的图象交于点A(m,2),将直线y=2x向下平移后与反比例函数y= 在第一象限内的图象交于点P,且△POA的面积为2.
(1)求k的值.
(2)求平移后的直线的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点A0(2,0)作直线l:y= x的垂线,垂足为点A1 , 过点A1作A1A2⊥x轴,垂足为点A2 , 过点A2作A2A3⊥l,垂足为点A3 , …,这样依次下去,得到一组线段:A0A1 , A1A2 , A2A3 , …,则线段A2016A2107的长为( )
A.( )2015
B.( )2016
C.( )2017
D.( )2018
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据: ≈1.732, ≈1.414)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( )
A.∠2=35°
B.∠2=45°
C.∠2=55°
D.∠2=125°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣ x+3交于C、D两点.连接BD、AD.
(1)求m的值.
(2)抛物线上有一点P,满足S△ABP=4S△ABD , 求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1 , l2 , 侧面积分别记作S1 , S2 , 则( )
A.l1:l2=1:2,S1:S2=1:2
B.l1:l2=1:4,S1:S2=1:2
C.l1:l2=1:2,S1:S2=1:4
D.l1:l2=1:4,S1:S2=1:4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com