【题目】如图,ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延
长线分别交于点E、F.
(1)求证:△AOE≌△COF;
(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.
【答案】解:(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,AB∥CD。
∴∠E=∠F又∠AOE=∠COF。∴△AOE≌△COF(ASA)。
(2)连接EC、AF,则EF与AC满足EF=AC时,四边形AECF是矩形。理由如下:
由(1)可知△AOE≌△COF,
∴OE=OF。
∵AO=CO,
∴四边形AECF是平行四边形。
∵EF=AC,
∴四边形AECF是矩形。
【解析】
试题分析:(1)根据平行四边形的性质和全等三角形的证明方法证明即可。
(2)连接EC、AF,则EF与AC满足EF=AC是,四边形AECF是矩形,首先证明四边形AECF是平行四边形,再根据对角线相等的平行四边形为矩形即可证明。
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90,AB=10cm,AC∶BC=4∶3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.
(1)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;
(2)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.
(3)当点Q在BC边上运动时,是否存在x,使得以△PBQ的一个顶点为圆心作圆时,另外两个顶点均在这个圆上,若存在,求出 x的值;不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列判断不正确的是( )。
A. 等腰三角形的两底角相等
B. 等腰三角形的两腰相等
C. 等边三角形的三个内角都是60°
D. 两个内角分别为120°、40°的三角形是等腰三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
(1)则样本容量容量是______________,并补全直方图;
(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;
(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.
(1)求证:AF=BE;
(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com