【题目】一名射击运动员连续打靶8次,命中的环数如图所示,则命中环数的众数与中位数分别为( )
A.9环与8环
B.8环与9环
C.8环与8.5环
D.8.5环与9环
科目:初中数学 来源: 题型:
【题目】已知:在△ABC中,∠CAB=90°,AB=AC.
(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;
(2)点P,Q是BC边上两动点(不与B,C重合),点P在点Q左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.
①依题意将图2补全;
②小明通过观察和实验,提出猜想:在点P,Q运动的过程中,始终有PM=PA.他把这个猜想与同学们进行交流,通过讨论,形成以下证明猜想的思路:
(Ⅰ)要想证明PM=PA,只需证△APM为等腰直角三角形;
(Ⅱ)要想证明△APM为等腰直角三角形,只需证∠PAM=90°,PA=AM;
…
请参考上面的思路,帮助小明证明PM=PA.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某面粉加工厂加工的面粉,用每袋可装10g面粉的袋子装了200袋经过称重,质量超过标准质量10kg的用正数表示,质量低于标准质量10kg的用负数表示,结果记录如下
与标准质量的偏差(kg) | ﹣1.5 | ﹣1 | ﹣0.5 | 0 | 0.5 | 1 | 2 |
袋数(袋) | 40 | 30 | 10 | 25 | 40 | 20 | 35 |
(1)求这批面粉的总质量;
(2)如果100kg小麦加工80kg面粉,那么这批面粉是由多少千克小麦加工的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.
(1)如图1,若AB=,点A,E,P恰好在一条直线上时,求EF的长(直接写出结果);
(2)如图2,当点P为射线BC上任意一点时,求证:BF=EF;
(3)若AB=,设BP=2,求QF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,过点C作CD⊥CB交∠CBA的外角平分线于点D,连接AD,过点C作∠BCE=∠BAD,交AB的延长线于点E.若CD=3,则CE=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对正方形纸片ABCD进行如下操作:
(i)过点D任作一条直线与BC边相交于点E1(如图①),记∠CDE1=α1;
(ii)作∠ADE1的平分线交AB边于点E2(如图②),记∠ADE2=α2;
(iii)作∠CDE2的平分线交BC边于点E3(如图③),记∠CDE3=α3;
按此作法从操作(2)起重复以上步骤,得到α1 , α2 , …,αn , …,现有如下结论:①当α1=10°时,α2=40°;②2α4+α3=90°; ③当α5=30°时,△CDE9≌△ADE10;④当α1=45°时,BE2= .
其中正确的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将含30°角的三角板ABC如图放置,使其三个顶点分别落在三条平行直线上,其中∠ACB=90°,当∠1=60°时,图中等于30°的角的个数是()
A. 6个 B. 5个 C. 4个 D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为a的正方形,点G、E分别是边AB、BC的中点,∠AEF=90°,且EF交正方形外角的平方线CF于点F.
(1)证明:△AGE≌△ECF;
(2)求△AEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:
(1)在这次抽样调查中,一共调查了多少名学生?
(2)请把折线统计图(图1)补充完整;
(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;
(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com