| A. | 4 | B. | 5 | C. | 10 | D. | 3 |
分析 连结OD,先根据三角形外角性质得∠BOD=2∠A,而∠BOC=2∠BAD,所以∠BOC=∠BOD,根据等腰三角形的性质得OB⊥CD,则根据垂径定理得到CE=$\frac{1}{2}$CD=4,设⊙O的半径为R,则OE=AE-OA=8-R,在Rt△OCE中,根据勾股定理得R2=(8-R)2+42,解得R=5,故可得出结论.
解答 解:连结OD,如图,![]()
∵OA=OD,
∴∠A=∠ODA,
∴∠BOD=∠A+∠ODA=2∠A,
∵∠BOC=2∠BAD,
∴∠BOC=∠BOD,
而OC=OD,
∴OB⊥CD,
∴CE=DE=$\frac{1}{2}$CD=$\frac{1}{2}$×8=4,
设⊙O的半径为R,则OE=AE-OA=8-R,
在Rt△OCE中,
∵OC2=OE2+CE2,
∴R2=(8-R)2+42,解得R=5,即设⊙O的半径为5,
∴⊙O的直径为10.
故选C.
点评 本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 950×104 | B. | 95×105 | C. | 9.5×106 | D. | 0.95×107 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ±$\sqrt{0.04}$=±0.2 | B. | $\sqrt{0.09}$=±0.3 | C. | $\sqrt{(-5)^{2}}$=5 | D. | $\root{3}{-1000}$=-10 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com