
解:(1)y=0时,ax
2+(a+c)x+c=0,
△=b
2-4ac=(a+c)
2-4ac=(a-c)
2,
结合图形可知,a<0,c>0,
∴x=

=

=

,
解得x
1=-1,x
2=-

,
∴点D的坐标是(-1,0);
(2)当x=0时,y=ax
2+(a+c)x+c=c,
∵∠BFC=45°,
∴△AOF是等腰直角三角形,
∴OF=c,
∴DF=OF-DO=c-1,
∴DF:DO=(c-1):1=c-1,
∵-

=-

,

=

=-

,
∴顶点B的坐标是(-

,-

),
过点B作BE⊥x轴,垂足为E,则△BEF是等腰直角三角形,
∴BE=EF,
即-

=-

+c,
整理得a+c=2,
又∵CE=CO-OE=-

-(-

)=

,
∴tan∠BCF=

=

=

=

=c-1,
∴DF:DO=tan∠BCF=c-1.
分析:(1)令y=0,解关于x的一元二次方程ax
2+(a+c)x+c=0,再根据点D在x轴的负半轴即可得解;
(2)根据∠BFC=45°可得△AOF是等腰直角三角形,根据点D与点A的坐标分别表示出DF与DO的长度,即可求出其比值,利用顶点公式写出点B的坐标,过点B作BE⊥x轴于点E,根据∠BFC=45°可知△BEF是等腰直角三角形,利用BE=EF列式求出a、c的关系,再根据BE与CE的长度列式求出tan∠BCF,然后进行比较即可得解.
点评:本题是对二次函数的综合考查,包括二次函数解析式与x轴的交点的求解,等腰直角三角形的性质,顶点坐标的求解,以及正切函数的求解,综合性较强,难度较大,但只要认真分析,仔细计算也不难求解.