精英家教网 > 初中数学 > 题目详情
9.一个多边形的内角和为1080°,则它的边数为(  )
A.9B.8C.7D.6

分析 首先设这个多边形的边数为n,由n边形的内角和等于180°(n-2),即可得方程180(n-2)=1080,解此方程即可求得答案.

解答 解:设这个多边形的边数为n,
根据题意得:180(n-2)=1080,
解得:n=8.
故选B.

点评 此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,以C为圆心5cm的长为半径作圆,则⊙C与AB所在直线的位置关系是(  )
A.相离B.相切C.相交D.内含

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知AD是△ABC的角平分线,AD的垂直平分线交AB于点F,交BC的延长线于点E,连接AE、DF.试说明:
(1)∠EAD=∠EDA;
(2)DF∥AC;
(3)∠B=∠CAE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,AB为⊙O的直径,D为半圆的中点,DE⊥弦BC于E,连接BD,OE.
(1)求证:OE⊥CD;
(2)若BE=2,OE=$\sqrt{2}$,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知:如图(1),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.
(1)求证:四边形ABCD是菱形;
(2)如图(2),若AD=AF,延长AE、DC交于点G,求证:AF2=AG•DF;
(3)在第(2)小题的条件下,连接BD,交AG于点H,若HE=4,EG=12,求AH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图1是长方形纸带,∠DEF=21°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是117°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,在矩形ABCD中,AB=4,BC=5.点E在边BC上,以AE为边作正方形AEFG,顶点F恰好在边CD上,FG与AD交于点H.则DH的长为$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,正方形ABCD的边长为2cm,△PMN是直角一块三角板(∠N=30°),PM>2cm,PM与BC均在直线l上,开始时M点与B点重合,将三角板向右平行移动,直至M点与C点重合为止.设BM=xcm,三角板与正方形重叠部分的面积外ycm2
下列结论:
①当0≤x≤$\frac{2}{3}$$\sqrt{3}$时,y与x之间的函数关系式为y=$\frac{\sqrt{3}}{2}$x;
②当$\frac{2}{3}$$\sqrt{3}$≤x≤2时,y与x之间的函数关系式为y=2x-$\frac{2}{3}$$\sqrt{3}$;
③当MN经过AB的中点时,y=$\frac{1}{2}$$\sqrt{3}$(cm2);
④存在x的值,使y=$\frac{1}{2}$S正方形ABCD($\frac{1}{2}$S正方形ABCD表示正方形ABCD的面积).
其中正确的是②④(写出所有正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)
(参考数据:sin35°≈$\frac{7}{12}$,cos35°≈$\frac{5}{6}$,tan35°≈$\frac{7}{10}$)

查看答案和解析>>

同步练习册答案