精英家教网 > 初中数学 > 题目详情

如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=8,BC=5,则BD的长为________.

1.5
分析:延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=8,BC=5,即可推出BD的长度.
解答:解:延长BD与AC交于点E,
∵∠A=∠ABD,
∴BE=AE,
∵BD⊥CD,
∴BE⊥CD,
∵CD平分∠ACB,
∴∠BCD=∠ECD,
∴∠EBC=∠BEC,
∴△BEC为等腰三角形,
∴BC=CE,
∵BE⊥CD,
∴2BD=BE,
∵AC=8,BC=5,
∴CE=5,
∴AE=AC-EC=8-5=3,
∴BE=3,
∴BD=1.5.
点评:本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、已知:如图,D为△ABC内一点,AC=BC,CD平分∠ACB.
求证:∠ABD=∠BAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,D为△ABC内一点,E为△ABC外一点,且∠1=∠2,∠3=∠4.
证明:△ABC∽△DBE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,D为△ABC内一点连接BD、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,BE、
CE交于E,连接DE.
(1)求证:
BC
AB
=
BE
BD

(2)求证:△DBE∽△ABC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,D为△ABC内的一点,E为△ABC外的一点,且∠1=∠2,∠3=∠4.
(1)求证:△ABD∽△CBE.
(2)求证:△ABC∽△DBE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,O为△ABC内一点,以O为位似中心,作△A′B′C′∽△ABC,且相似比为2.

查看答案和解析>>

同步练习册答案