精英家教网 > 初中数学 > 题目详情
(2013•甘井子区二模)矩形OABC在平面直角坐标系中的位置如图所示,O为坐标原点,OA与y轴重合,OC与x轴重合,M为BC上点,沿AM折叠矩形使得点B′落在OC上,且知OA=6,OB′=8,则点M坐标是
(10,
8
3
(10,
8
3
分析:在直角△OAB′中利用勾股定理即可求得AB′的长,则M的横坐标可以求得,设CM=x,则BM=B′M=6-x,直角△B′CM中利用勾股定理即可列方程求得x的值,从而求得M的纵坐标.
解答:解:在直角△OAB′中,AB′=
OA2+OB2
=
62+82
=10,
则AB=AB′=10,即M的横坐标是10;
设CM=x,则BM=B′M=6-x,
在直角△B′CM中,B′C=OC-OB′=10-8=2,
B′M2=B′C2+CM2,
则(6-x)2=22+x2
解得:x=
8
3

故M的坐标是(10,
8
3
).
点评:本题考查的是图形折叠的性质,熟知图形翻折不变性的性质是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•甘井子区二模)在函数y=
2x-3
中,自变量x的取值范围是
x≥
3
2
x≥
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•甘井子区二模)在?ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.
(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;
(2)如图2,当EF与AB相交时,若∠EAB=α(0°<α<90°),请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);
(3)如图3,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•甘井子区二模)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为
8a
8a

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•甘井子区一模)已知关于x的方程x2+mx-6=0的一个根为2,则m=
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•甘井子区二模)对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则可列方程为
289(1-x)2=256
289(1-x)2=256

查看答案和解析>>

同步练习册答案