精英家教网 > 初中数学 > 题目详情

【题目】如图①,在平面直角坐标系中,直线y=﹣ x+ 与x轴交于C点,与y轴交于点E,点A在x轴的负半轴,以A点为圆心,AO为半径的圆与直线的CE相切于点F,交x轴负半轴于另一点B.
(1)求⊙A的半径;
(2)连BF、AE,则BF与AE之间有什么位置关系?写出结论并证明.
(3)如图②,以AC为直径作⊙O1交y轴于M,N两点,点P是弧MC上任意一点,点Q是弧PM的中点,连CP,NQ,延长CP,NQ交于D点,求CD的长.

【答案】
(1)解:连接AF,如图①a.

∵直线y=﹣ x+ 与x轴交于C点,与y轴交于E点,

∴点C的坐标为(2,0),点E的坐标为(0, ),

∴OC=2,OE=

∵∠EOC=90°,

∴EC= =

∵AO⊥OE,∴直线OE与⊙A相切于点O.

又∵直线CE与⊙A相切于点F,

∴∠AFC=90°,EF=OE=

∴FC=FE+EC= + =2

在Rt△AFC中,

设AF=x,则AO=x,AC=x+2.

根据勾股定理可得:x2+(2 2=(x+2)2

解得:x=1.

∴⊙A的半径为1


(2)解:BF∥AE.

证明:连接OF,交AE于点H,如图①b.

∵EF、EO分别与⊙A相切于点F、O,

∴EF=EO,EA平分∠FEO,

∴EA⊥OF,即∠AHO=90°.

∵BO是⊙A的直径,

∴∠BFO=90°,

∴∠BFO=∠AHO,

∴BF∥AE


(3)解:连接QC、QM、MC、NC、MO1,如图②.

∵AC是⊙O1的直径,AC⊥MN,

∴∠NQC=∠MNC.

∵∠MQC+∠MNC=180°,∠DQC+∠NQC=180°,

∴∠MQC=∠DQC.

∵点Q是 的中点,

∴∠MCQ=∠PCQ.

在△MCQ和△DCQ中,

∴△MCQ≌△DCQ(ASA),

∴MC=DC.

∵OA=1,OC=2,

∴AC=3,AO1= ,OO1=

在Rt△MOO1中,

MO1=AO1= ,OO1=

∴MO= =

在Rt△MOC中,

MC= =

∴DC=

∴CD的长为


【解析】(1)连接AF,如图①a,由直线EC的解析式可求出OE、OC的长,根据勾股定理可求出EC的长,然后根据切线长定理可求出EF的长,然后在Rt△AFC中运用勾股定理就可求出圆的半径.(2)连接OF,交AE于点H,如图①b,根据切线长定理可得EF=EO,EA平分∠FEO,根据等腰三角形的性质可得∠AHO=90°,由BO是⊙A的直径可得∠BFO=90°,从而得到∠BFO=∠AHO,即可得到BF∥AE.(3)连接QC、QM、MC、NC、MO1 , 如图②,易证△MCQ≌△DCQ,则有MC=DC.在Rt△MOO1中,运用勾股定理可求出MO的长,然后在Rt△MOC中,运用勾股定理就可求出MC,即可得到CD的长.
【考点精析】解答此题的关键在于理解平行线的判定的相关知识,掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数 (k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=

(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是( )

A.( ,1)
B.(1,﹣
C.(2 ,﹣2)
D.(2,﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细阅读下面例题,解答问题:

例题:已知二次三项式x24xm有一个因式是(x3),求另一个因式以及m的值。

解:设另一个因式为(xn),得 x24xm=(x3)(xn

x24xmx2+(n3x3n

解得:n=-7 m=-21 另一个因式为(x7),m的值为-21

问题:仿照以上方法解答下面问题:

已知二次三项式2x23xk有一个因式是(2x5),求另一个因式以及k的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2012年6月5日是“世界环境日”,南宁市某校举行了“绿色家园”演讲比赛,赛后整理参赛同学的成绩,制作成直方图(如图).
(1)分数段在范围的人数最多;
(2)全校共有多少人参加比赛?
(3)学校决定选派本次比赛成绩最好的3人参加南宁市中学生环保演讲决赛,并为参赛选手准备了红、蓝、白颜色的上衣各1件和2条白色、1条蓝色的裤子.请用“列表法”或“树形图法”表示上衣和裤子搭配的所有可能出现的结果,并求出上衣和能搭配成同一种颜色的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为开展体育大课间活动,需要购买篮球与足球若干个.已知购买2个篮球和3个足球共需要380元;购买4个篮球和5个足球共需要700元.
(1)求购买一个篮球、一个足球各需多少元?
(2)若体育老师带了6000元去购买这种篮球与足球共80个.由于数量较多,店主给出“一律打九折”的优惠价,那么他最多能购买多少个篮球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠CAB=30°,AB=10,点D在线段AB上,AD=2.点P,Q以相同的速度从D点同时出发,点P沿DB方向运动,点Q沿DA方向到点A后立刻以原速返回向点B运动.以PQ为直径构造⊙O,过点P作⊙O的切线交折线AC﹣CB于点E,将线段EP绕点E顺时针旋转60°得到EF,过F作FG⊥EP于G,当P运动到点B时,Q也停止运动,设DP=m.
(1)当2<m≤8时,AP=,AQ=.(用m的代数式表示)
(2)当线段FG长度达到最大时,求m的值;
(3)在点P,Q整个运动过程中, ①当m为何值时,⊙O与△ABC的一边相切?
②直接写出点F所经过的路径长是.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,第一次将OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).

(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为   ,B4的坐标为   

(2)按以上规律将OAB进行n次变换得到△OAnBn,则An的坐标为   ,Bn的坐标为   

(3)△OAnBn的面积为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是(
A.3
B.4
C.2
D.

查看答案和解析>>

同步练习册答案