精英家教网 > 初中数学 > 题目详情

在菱形ABCD中,DE⊥AB,sinA=数学公式,BE=2,则cos∠DBE的值是________.


分析:根据sinA=,设出DE=4x,则AD=5x,AE=3x,得出AB=3x+2,根据AB=AD,3x+2=5x,求出x,再利用勾股定理得出BD的长,即可求出答案.
解答:∵sinA=
设DE=4x,
则AD=5x,AE=3x,
∵BE=2,
∴AB=3x+2,
∵AB=AD,
∴3x+2=5x,
∴x=1,
∴DE=4,
∴BD===2
∴cos∠DBE===
故答案为:
点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在菱形ABCD中,对角线AC、BD交于O点,AC=12cm,BD=9cm,则菱形ABCD的面积是
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数=
60
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在菱形ABCD中,AE⊥BC于E,已知EC=1,cosB=
513
,则这个菱形的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在菱形ABCD中,AC,BD交于点O,AB=15,AO=12,P从A出发,Q从O出发,分别以2cm/s和1cm/s的速度各自向O,B点运动,当运动时间为多少秒时,四边形BQPA的面积是△POQ面积的8倍.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,P为对角线BD上一点,连接AP,若AP=BP,AD=PD,则∠PAC的度数是(  )

查看答案和解析>>

同步练习册答案