精英家教网 > 初中数学 > 题目详情

【题目】分解因式:2ab2-6a2b+ab;

【答案】ab(2b-6a+1)

【解析】试题分析:根据提公因式法分解因式,先确定公因式ab,再提取公因式即可.

试题解析:2ab2-6a2b+ab = ab(2b-6a+1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若点A(m﹣3,m+2)在y轴上,则点A到原点的距离为个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一组邻边相等,并且有一个角是直角的平行四边形是正方形,因此正方形是四边相等,四角相等的四边形.
初二数学兴趣小组开展了一次课外活动,过程如下:如图,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.

(1)求证:DP=DQ
(2)如图②,小聪在图①的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;

(3)如图③,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC延长线于点E,连接PE,若AB:AP=3:4,请帮小聪算出△DEP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解
材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:
梯形的中位线平行于两底,并且等于两底和的一半.
如图(1):在梯形ABCD中:AD∥BC
∵E、F是AB、CD的中点
∴EF∥AD∥BC
EF=(AD+BC)
材料二:经过三角形一边的中点与另一边平行的直线必平分第三边
如图(2):在△ABC中:
∵E是AB的中点,EF∥BC
∴F是AC的中点
如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°

请你运用所学知识,结合上述材料,解答下列问题.
(1)求证:EF=AC;
(2)若OD=,OC=5,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P(x0 , y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.
例如:求点P(﹣1,2)到直线y=3x+7的距离.
解:因为直线y=3x+7,其中k=3,b=7.
所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = =
根据以上材料,解答下列问题:
(1)求点P(1,﹣1)到直线y=x﹣1的距离;
(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;
(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是( )
A.圆柱
B.圆锥
C.球
D.正方体

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有三个内角相等的四边形叫三等角四边形.

(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;
(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.
(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若点P在第二、四象限的角平分线上,在y轴的左侧,且到y轴的距离是2,则点P的坐标是().

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|3|+(﹣23+10_____

查看答案和解析>>

同步练习册答案