【题目】如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.
(1)求抛物线的解析式和顶点坐标;
(2)当0<x<3时,求y的取值范围;
(3)点P为抛物线上一点,若S△PAB=10,求出此时点P的坐标.
【答案】
(1)解:把A(﹣1,0)、B(3,0)分别代入y=x2+bx+c中,
得: ,解得:
,
∴抛物线的解析式为y=x2﹣2x﹣3.
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴顶点坐标为(1,﹣4)
(2)解:由图可得当0<x<3时,﹣4≤y<0
(3)解:∵A(﹣1,0)、B(3,0),
∴AB=4.
设P(x,y),则S△PAB= AB|y|=2|y|=10,
∴|y|=5,
∴y=±5.
①当y=5时,x2﹣2x﹣3=5,解得:x1=﹣2,x2=4,
此时P点坐标为(﹣2,5)或(4,5);
②当y=﹣5时,x2﹣2x﹣3=﹣5,方程无解;
综上所述,P点坐标为(﹣2,5)或(4,5)
【解析】(1)由点A、B的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法即可求出抛物线顶点坐标;(2)结合函数图象以及A、B点的坐标即可得出结论;(3)设P(x,y),根据三角形的面积公式以及S△PAB=10,即可算出y的值,代入抛物线解析式即可得出点P的坐标.
科目:初中数学 来源: 题型:
【题目】根据“欢欢”与“乐乐”的对话,解决下面的问题:
欢欢:我手中有四张卡片,它们上面分别写有8,3x+2, x-3,
.
乐乐:我用等号将这四张卡片中的任意两张卡片上的数或式子连接起来,就会得到等式或一元一次方程.
问题:(1)乐乐一共能写出几个等式?
(2)在她写的这些等式中,有几个一元一次方程?请写出这几个一元一次方程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 是线段
上一点,
,
.
()
__________
;
()动点
、
分别从
、
同时出发,点
以
的速度沿
向右运动,终点为
;点
以
的速度沿
向左运动,终点为
.当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,
、
、
三点,有一点恰好是以另两点为端点的线段的中点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题5分)某服装店老板以60元的单价购进20件流行款的女服装,老板交代销售小姐以80元为标准价出售.针对不同的顾客,销售小姐对20件服装的售价不完全相同,她把超过80元的记为正数,其销售结果如下表所示:
该服装店在售完这20件服装后,请你通过计算说明该服装店老板是赚钱还是亏本?如果赚钱,那么赚了多少钱?如果亏本,那么亏了多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=-2x2先向左平移1个单位,再向上平移3个单位,两次平移后得到的抛物线的解析式为( )
A.y=-2(x+1)2+3B.y=-2(x+1)2-3C.y=-2(x-1)2+3D.y=-2(x-1)2-3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答.
(1)把△ABC绕点P旋转180°得△A′B′C′.
(2)把△ABC向右平移7个单位得△A″B″C″.
(3)△A′B′C′与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com