【题目】如图:直线y=-x+5分别与轴、轴交于A、B两点.
(1)求A、B两点的坐标;
(2)已知点C坐标为(4,0),设点C关于直线AB的对称点为D,请直接写出点D的坐标;
(3)请在直线AB找一点M和轴上找一点N,使△CMN的周长最短,求出点N的坐标和△CMN的周长.
【答案】(1)A(5,0);B(0,5);(2)D(5,1);(3)N(0,) ;
【解析】
(1)令x=0,则y=5;令y=0,则x=5,即可求得;(2)首先根据直线AB的解析式可知△OAB是等腰直角三角形,然后根据轴对称的性质即可求出点D的坐标;(3)作出点C关于直线y轴的对称点C′,连接DE交AB于点M,交y轴于点N,则此时△CMN的周长最短.由D、E两点的坐标利用待定系数法求出直线DC′的解析式,再根据y轴上点的坐标特征,即可求出点N的坐标.
(1) ∵直线分别与轴、轴交于A、B两点
令,则;令,则
∴点A坐标为(5,0)、点B 坐标为(0, 5);
(2)如图:过A作直线l⊥x轴,作CD⊥AB交直线l于D,
∵OA=OB=5,
∴∠OAB=45°,
∵CD⊥AB,直线l⊥x轴,
∴∠DCA=45°,∠DAB=45°
∴∠CDA=45°,
∴AD=AC,
∵AB⊥CD,
∴AB垂直平分CD,
∴D即是C关于AB的对称点,
∵A(5,0),C(4,0)
∴AC=AD=1,
∴ 点C 关于直线AB的对称点D的坐标为(5,1),
(3) 作点C关于轴的对称点C′,则C′的坐标为(-4,0)
连接C′D交AB于点M,交轴于点N,
∵点C、C′关于轴对称
∴NC= NC′,
∵点C、D关于直线AB对称,
∴CM=DM,
此时,△CMN的周长=CM+MN+NC= DM +MN+ NC′= DC′周长最短;
设直线C′D的解析式为
∵点C′的坐标为(-4,0),点D的坐标为(5,1)
∴,解得
∴直线C′D的解析式为,
与轴的交点N的坐标为 (0,)
根据勾股定理,或两点间距离公式可求 △CMN的周长
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(a,b),B(c,0),|a-3|+(2b-c)2+=0.
(1)求点A,B的坐标;
(2)如图,点C为x轴正半轴上一点,且OC=OA,点D为OC的中点,连AC,AD,请探索AD+CD与AC之间的大小关系,并说明理由;
(3)如图,过点A作AE⊥y轴于E,F为x轴负半轴上一动点( 不与(-3,0)重合 ),G在EF延长线上,以EG为一边作∠GEN=45°,过A作AM⊥x轴,交EN于点M,连FM,当点F在x轴负半轴上移动时,式子的值是否发生变化?若变化,求出变化的范围;若不变化,请求出其值并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).
(1)用这样的两个三角形构造成如图(2)的图形(B,E,C三点在一条直线上),利用这个图形,求证:.
(2)当a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.请在坐标轴上找一点C,使△ABC为等腰三角形.
①写出一个满足条件的在x轴上的点的坐标: ;
②写出一个满足条件的在y轴上的点的坐标: ;
③满足条件的在y轴上的点共有 个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一张圆形纸片和一张含45°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么圆形纸片和扇形纸片的面积比是( )
A.4:5
B.2:5
C.
:2
D.
:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从M、N两地相向而行,甲车出发1小时后乙车才出发,并以各自速度匀速行驶,甲车出发3小时两车相遇,相遇后两车仍按原速度原方向各自行驶.如图折线A-B-C-D表示甲、乙两车之间的距离S(千米) 与甲车出发时间(小时)之间的函数图象.则:
①M、N两地之间的距离为________________千米;
②当时,__________________小时.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件) | 100 | 110 | 120 | 130 | … |
月销量(件) | 200 | 180 | 160 | 140 | … |
已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:
①销售该运动服每件的利润是 ()元;
②月销量是 ()件;(直接写出结果)
(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
(3)若销售该运动服所得的月利润不低于8000元,请确定售价x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为( )
A.
B.
C.1
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(1,3)、B(3,3)、C(4,2).
(1)请在图中作出经过点A、B、C三点的⊙M,并写出圆心M的坐标;
(2)若D(1,4),则直线BD与⊙M .
A.相切
B.相交.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com