【题目】计算下列各题
某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元,设矩形一边长为,面积为平方米.
(1)求与之间的函数关系式,并写出自变量的取值范围;
(2)设计费能可以达到30000元吗?为什么?
(3)当是多少米时,设计费最多?最多是多少元?
【答案】(1), ;(2)设计费能达到30000元;(3)当是4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.
【解析】
(1)用8-x表示另一边,即可列式求与之间的函数关系式;
(2)能,由2000S=30000,求出x即方程有解且符合题意;
(3)配方为顶点式解析式,即可确定答案.
解:(1)矩形的一边长为米,周长为16米.另一边长为米,
∴,其中;
(2)能.
理由是:∵设计费为每平方米2000元,∴2000S=30000
∴面积为:(平方米)
即,解得,;
∴设计费能达到30000元;
(3)∵,
∴当时,,∴.
∴当是4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=a(x﹣1)2+4的图象经过点(﹣1,0).
(1)求这个二次函数的解析式;
(2)判断这个二次函数的开口方向,对称轴和顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.
(1)求证:DC是⊙O的切线;
(2)若AB=2,求DC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店出售某品牌的棉衣,进价为100元/件,当售价为150元/件时,平均每天可卖30件;为了增加利润和减少库存,商店决定降价销售.经调査,每件每降价1元,则每天可多卖2件.
(1)若每件降价20元,则平均每天可卖______件.
(2)现要想平均每天获利2000元,且让顾客得到实惠,求每件棉衣应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m,D为AB的中点,抛物线y=﹣x2+bx+c经过点A、点D.
(1)当m=1时,求抛物线y=﹣x2+bx+c的函数关系式;
(2)延长BC至点E,连接OE,若OD平分∠AOE,抛物线与线段CE相交,求抛物线的顶点P到达最高位置时的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),某数学活动小组经探究发现:在⊙O中,直径AB与弦CD相交于点P,此时PA· PB=PC·PD
(1)如图(2),若AB与CD相交于圆外一点P, 上面的结论是否成立?请说明理由.
(2)如图(3),将PD绕点P逆时针旋转至与⊙O相切于点C, 直接写出PA、PB、PC之间的数量关系.
(3)如图(3),直接利用(2)的结论,求当 PC= ,PA=1时,阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°, ②OC=OE, ③tan∠OCD =,④中,正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com