精英家教网 > 初中数学 > 题目详情

【题目】如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB是⊙O的直径,D是BC的中点.

(1)试判断AB、AC之间的大小关系,并给出证明;
(2)在上述题设条件下,当△ABC为正三角形时,点E是否AC的中点?为什么?

【答案】
(1)AB=AC,

证明:连结AD,

∵AB是⊙O的直径

∴∠ADB=90°,

即AD⊥BC,

∵BD=DC,

∴AB=AC


(2)解:当△ABC为正三角形时,E是AC的中点,

连接BE,

∵AB为直径,

∴∠BEA=90°,

即BE⊥AC,

∵△ABC为正三角形,

∴AE=EC,

即E是AC的中点


【解析】(1)连接AD,根据圆周角定理求出∠ADB=90°,根据线段垂直平分线性质推出即可;(2)根据圆周角定理求出∠AEB=90°,根据等腰三角形性质求出即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】感知:如图①,四边形ABCDCEFG均为正方形.易知BE=DG

探究:如图②,四边形ABCDCEFG均为菱形,且∠A=∠F.求证:BE=DG

应用:如图③,四边形ABCDCEFG均为菱形,点E在边AD上,点GAD的延长线上.若AE=3ED, ∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,

(1)求证:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A的正南方向220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现在正以15千米/时的速度沿北偏东30°方向往C移动,且台风中心风力不变,如图,若城市所受风力达到或超过4级,则称为受台风影响.

(1)该城市是否会受到这次台风的影响?请说明理由;

(2)若会受台风影响,那么台风影响该城市的持续时间有多长?该城市受到台风影响的最大风力为几级?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ACB=90°,CDAB边上的高,∠BAC的平分线为AFAFCD交于点E,则CEF__________三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.乙电动车的速度始终不变.设甲与学校相距y(千米),乙与学校相离y(千米),甲离开学校的时间为t(分钟).yyx之间的函数图象如图所示,结合图象解答下列问题:

1)电动车的速度为   千米/分钟;

2)甲步行所用的时间为   分;

3)求乙返回到学校时,甲与学校相距多远?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.

(1)怎样围才能使矩形场地的面积为750m2
(2)能否使所围矩形场地的面积为810m2 , 为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=x2+bx+c过点(2,﹣2)和(﹣1,10),与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式.
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】进入冬季,我市空气质量下降,多次出现雾霾天气.商场根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务.
(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;
(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;
(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?

查看答案和解析>>

同步练习册答案