精英家教网 > 初中数学 > 题目详情

【题目】二次函数图象的顶点在原点O,经过点A(1, );点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.

(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等边三角形时,求P点的坐标.

【答案】
(1)

解:∵二次函数图象的顶点在原点O,

∴设二次函数的解析式为y=ax2

将点A(1, )代入y=ax2得:a=

∴二次函数的解析式为y= x2


(2)

证明:∵点P在抛物线y= x2上,

∴可设点P的坐标为(x, x2),

过点P作PB⊥y轴于点B,则BF=| x2﹣1|,PB=|x|,

∴Rt△BPF中,

PF= = x2+1,

∵PM⊥直线y=﹣1,

∴PM= x2+1,

∴PF=PM,

∴∠PFM=∠PMF,

又∵PM∥y轴,

∴∠MFH=∠PMF,

∴∠PFM=∠MFH,

∴FM平分∠OFP


(3)

解:当△FPM是等边三角形时,∠PMF=60°,

∴∠FMH=30°,

在Rt△MFH中,MF=2FH=2×2=4,

∵PF=PM=FM,

x2+1=4,

解得:x=±2

x2= ×12=3,

∴满足条件的点P的坐标为(2 ,3)或(﹣2 ,3)


【解析】(1)根据题意可设函数的解析式为y=ax2 , 将点A代入函数解析式,求出a的值,继而可求得二次函数的解析式;(2)过点P作PB⊥y轴于点B,利用勾股定理求出PF,表示出PM,可得PF=PM,∠PFM=∠PMF,结合平行线的性质,可得出结论;(3)首先可得∠FMH=30°,设点P的坐标为(x, x2),根据PF=PM=FM,可得关于x的方程,求出x的值即可得出答案.
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对等边三角形的性质的理解,了解等边三角形的三个角都相等并且每个角都是60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】龟兔首次赛跑之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了龟兔再次赛跑的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:

①兔子和乌龟同时从起点出发;

龟兔再次赛跑的路程为1000米;

③乌龟在途中休息了10分钟;

④兔子在途中750米处追上乌龟.

其中正确的说法共有____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
<a<
⑤b>c.
其中含所有正确结论的选项是(

A.①③
B.①③④
C.②④⑤
D.①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为 ,则a的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的角平分线上的一点,的中点,点上的一个动点,若的最小值为,则的长度为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1都是等腰直角三角形,在线段上,连接的延长线交

(1)猜想线段的关系;(不必证明)

(2)当点内部一点时,使点和点分别在的两侧,其它条件不变.请你在图2中补全图形,则(1)中结论成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=kx2﹣7x﹣7的图象与x轴没有交点,则k的取值范围为(
A.k>﹣
B.k≥﹣ 且k≠0
C.k<﹣
D.k>﹣ 且k≠0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为(

A.9:4
B.3:2
C.4:3
D.16:9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:

(1)①画出△ABC关于y轴对称的△A1B1C1
②画出△ABC关于原点O对称的△A2B2C2
(2)点C1的坐标是;点C2的坐标是
(3)试判断:△A1B1C1与△A2B2C2是否关于x轴对称?(只需写出判断结果)

查看答案和解析>>

同步练习册答案