精英家教网 > 初中数学 > 题目详情
已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.
(1)如图1,若AB=AE,∠DAC=∠EAB=60°,求∠BFC的度数;
(2)如图2,∠ABC=α,∠ACD=β,BC=4,BD=6.
①若α=30°,β=60°,AB的长为
 

②若改变α,β的大小,但α+β=90°,△ABC的面积是否变化?若不变,求出其值;若变化,说明变化的规律.
考点:全等三角形的判定与性质,等腰三角形的性质
专题:
分析:(1)根据SAS,可首先证明△AEC≌△ABD,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC的度数;
(2)如图2,在△ABC外作等边△BAE,连接CE,利用旋转法证明△EAC≌△BAD,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt△BCE中,由勾股定理求BE即可;
(3)过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK,仿照(2)利用旋转法证明△EAC≌△BAD,求得EC=DB,利用勾股定理即可得出结论.
解答:
解:(1)∵AE=AB,AD=AC,
∵∠EAB=∠DAC=60°,
∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,
∴∠EAC=∠DAB,
在△AEC和△ABD中
AE=AB
∠EAC=∠BAD
AC=AD

∴△AEC≌△ABD(SAS),
∴∠AEC=∠ABD,
∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,
∴∠BFC=∠AEB+∠ABE=120°,
故答案为:120°;


(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.
由(1)可知△EAC≌△BAD.
∴EC=BD.
∴EC=BD=6,
∵∠BAE=60°,∠ABC=30°,
∴∠EBC=90°.
在RT△EBC中,EC=6,BC=4,
∴EB=
EC2-BC2
=
62-42
=2
5

∴AB=BE=2
5


②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,
以下证明:
如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.
∵AH⊥BC于H,
∴∠AHC=90°.
∵BE∥AH,
∴∠EBC=90°.
∵∠EBC=90°,BE=2AH,
∴EC2=EB2+BC2=4AH2+BC2
∵K为BE的中点,BE=2AH,
∴BK=AH.
∵BK∥AH,
∴四边形AKBH为平行四边形.
又∵∠EBC=90°,
∴四边形AKBH为矩形.∠ABE=∠ACD,
∴∠AKB=90°.
∴AK是BE的垂直平分线.
∴AB=AE.
∵AB=AE,AC=AD,∠ABE=∠ACD,
∴∠EAB=∠DAC,
∴∠EAB+∠EAD=∠DAC+∠EAD,
即∠EAC=∠BAD,
在△EAC与△BAD中
AB=AE
∠EAC=∠BAD
AC=AD

∴△EAC≌△BAD.
∴EC=BD=6.
在RT△BCE中,BE=
EC2-BC2
=2
5

∴AH=
1
2
BE=
5

∴S△ABC=
1
2
BC•AH=2
5
点评:本题考查了全等三角形的判定与性质,线段垂直平分线的性质,等边三角形的判定与性质,矩形的判定与性质,勾股定理的运用.关键是根据已知条件构造全等三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=2x2-6x+m的图象不在x轴的下方,则m的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠AOB=30°,P是∠AOB的平分线上一点,PC∥OB,交OA于C,CD⊥OB于D.若PC=3,则CD的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(
1
2
-2-6sin30°-(
1
7
-
5
0+
2
+|
2
-
3
|

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,某堤坝横断面为梯形ABCD,若斜坡AB的坡角∠BAD为35゜,斜坡CD的坡度为i=1:1.2(垂直高度CE与水平宽度DE的比),上底BC=10m,堤坝高度CE=5m,求下底AD的长度?(结果精确到0.1m,参考数据:sin35゜≈0.57,cos 35゜≈0.82,tan35゜≈0.70)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.

查看答案和解析>>

科目:初中数学 来源: 题型:

图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).
(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,∠B=30°,BC=8,D在边BC上,E在线段DC上,DE=4,△DEF是等边三角形,边DF交边AB于点M,边EF交边AC于点N.
(1)求证:△BMD∽△CNE;
(2)当BD为何值时,以M为圆心,以MF为半径的圆与BC相切?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点G是△ABC的重心,CG的延长线交AB于点D,GA=10,GC=8,GB=6,将△ADG绕点D顺时针方向旋转180°得到△BDE,则△EBC的面积为
 

查看答案和解析>>

同步练习册答案