【题目】如图,在长方形ABCD中,把△BCD沿对角线BD折叠得到△BED,线段BE与AD相交于点P,若AB=2,BC=4.
(1)BD= ;
(2)点P到BD的距离是 .
【答案】(1)2;(2)
【解析】
试题分析:(1)由勾股定理直接得出;
(2)设AP=x,证出△ABP≌△EDP,可知EP=x,PD=8﹣x,根据翻折不变性,可知ED=DC=AB=2,然后在Rt△PED中,利用勾股定理求出x,再由三角形的面积即可求出结论.
解:(1)∵四边形ABCD是长方形,
∴∠C=90°,
∴BD===2,
故答案为2;
(2)在△APB与△DEP中,
,
∴△APB≌△DEP,
∴AP=EP,
设AP=x,可知EP=x,PD=4﹣x,
∴在Rt△PED中,
x2+22=(4﹣x)2,
解得x=.
即AP=,
∴PD=4﹣=,
∴△BDP的面积=××2=×2点P到BD的距离,
∴点P到BD的距离=,
故答案为.
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,已知ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是( )
A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,真命题的个数有( )
①对角线互相平分的四边形是平行四边形;
②两组对角分别相等的四边形是平行四边形;
③一组对边平行,另一组对边相等的四边形是平行四边形.
A.3个 B.2个 C.1个 D.0个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 全等三角形是指面积相等的两个三角形B. 所有的等边三角形是全等三角形
C. 全等三角形的边相等D. 全等三角形的周长相等
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com